Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Ecol Evol ; 4(6): 831-840, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32284581

RESUMEN

The genetic basis for divergence in developmental gene expression among species is poorly understood, despite growing evidence that such changes underlie many interesting traits. Here we quantify transcription in hybrids of Heliocidaris tuberculata and Heliocidaris erythrogramma, two closely related sea urchins with highly divergent developmental gene expression and life histories. We find that most expression differences between species result from genetic influences that affect one stage of development, indicating limited pleiotropic consequences for most mutations that contribute to divergence in gene expression. Activation of zygotic transcription is broadly delayed in H. erythrogramma, the species with the derived life history, despite its overall faster premetamorphic development. Altered expression of several terminal differentiation genes associated with the derived larval morphology of H. erythrogramma is based largely on differences in the expression or function of their upstream regulators, providing insights into the genetic basis for the evolution of key life history traits.


Asunto(s)
Genes del Desarrollo , Erizos de Mar/genética , Animales , Expresión Génica , Larva , Fenotipo
2.
PLoS Genet ; 16(1): e1008537, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31961859

RESUMEN

Gene transcription profiles across tissues are largely defined by the activity of regulatory elements, most of which correspond to regions of accessible chromatin. Regulatory element activity is in turn modulated by genetic variation, resulting in variable transcription rates across individuals. The interplay of these factors, however, is poorly understood. Here we characterize expression and chromatin state dynamics across three tissues-liver, lung, and kidney-in 47 strains of the Collaborative Cross (CC) mouse population, examining the regulation of these dynamics by expression quantitative trait loci (eQTL) and chromatin QTL (cQTL). QTL whose allelic effects were consistent across tissues were detected for 1,101 genes and 133 chromatin regions. Also detected were eQTL and cQTL whose allelic effects differed across tissues, including local-eQTL for Pik3c2g detected in all three tissues but with distinct allelic effects. Leveraging overlapping measurements of gene expression and chromatin accessibility on the same mice from multiple tissues, we used mediation analysis to identify chromatin and gene expression intermediates of eQTL effects. Based on QTL and mediation analyses over multiple tissues, we propose a causal model for the distal genetic regulation of Akr1e1, a gene involved in glycogen metabolism, through the zinc finger transcription factor Zfp985 and chromatin intermediates. This analysis demonstrates the complexity of transcriptional and chromatin dynamics and their regulation over multiple tissues, as well as the value of the CC and related genetic resource populations for identifying specific regulatory mechanisms within cells and tissues.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina/química , Sitios de Carácter Cuantitativo , Animales , Cromatina/genética , Cromatina/metabolismo , Riñón/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Hígado/metabolismo , Pulmón/metabolismo , Masculino , Ratones , Especificidad de Órganos , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo
3.
Mamm Genome ; 29(1-2): 153-167, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29429127

RESUMEN

Epigenetic effects of environmental chemicals are under intense investigation to fill existing knowledge gaps between environmental/occupational exposures and adverse health outcomes. Chromatin accessibility is one prominent mechanism of epigenetic control of transcription, and understanding of the chemical effects on both could inform the causal role of epigenetic alterations in disease mechanisms. In this study, we hypothesized that baseline variability in chromatin organization and transcription profiles among various tissues and mouse strains influence the outcome of exposure to the DNA damaging chemical 1,3-butadiene. To test this hypothesis, we evaluated DNA damage along with comprehensive quantification of RNA transcripts (RNA-seq), identification of accessible chromatin (ATAC-seq), and characterization of regions with histone modifications associated with active transcription (ChIP-seq for acetylation at histone 3 lysine 27, H3K27ac). We collected these data in the lung, liver, and kidney of mice from two genetically divergent strains, C57BL/6J and CAST/EiJ, that were exposed to clean air or to 1,3-butadiene (~600 ppm) for 2 weeks. We found that tissue effects dominate differences in both gene expression and chromatin states, followed by strain effects. At baseline, xenobiotic metabolism was consistently more active in CAST/EiJ, while immune system pathways were more active in C57BL/6J across tissues. Surprisingly, even though all three tissues in both strains harbored butadiene-induced DNA damage, little transcriptional effect of butadiene was observed in liver and kidney. Toxicologically relevant effects of butadiene in the lung were on the pathways of xenobiotic metabolism and inflammation. We also found that variability in chromatin accessibility across individuals (i.e., strains) only partially explains the variability in transcription. This study showed that variation in the basal states of epigenome and transcriptome may be useful indicators for individuals or tissues susceptible to genotoxic environmental chemicals.


Asunto(s)
Daño del ADN/efectos de los fármacos , Epigénesis Genética , Transcripción Genética/genética , Transcriptoma/genética , Animales , Butadienos/toxicidad , Carcinógenos/toxicidad , Cromatina/efectos de los fármacos , Histonas/genética , Hígado/efectos de los fármacos , Hígado/patología , Pulmón/efectos de los fármacos , Pulmón/patología , Ratones , Pruebas de Mutagenicidad , Especificidad de Órganos/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
4.
Gut ; 67(1): 36-42, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-27742763

RESUMEN

OBJECTIVE: The clinical presentation and course of Crohn's disease (CD) is highly variable. We sought to better understand the cellular and molecular mechanisms that guide this heterogeneity, and characterise the cellular processes associated with disease phenotypes. DESIGN: We examined both gene expression and gene regulation (chromatin accessibility) in non-inflamed colon tissue from a cohort of adult patients with CD and control patients. To support the generality of our findings, we analysed previously published expression data from a large cohort of treatment-naïve paediatric CD and control ileum. RESULTS: We found that adult patients with CD clearly segregated into two classes based on colon tissue gene expression-one that largely resembled the normal colon and one where certain genes showed expression patterns normally specific to the ileum. These classes were supported by changes in gene regulatory profiles observed at the level of chromatin accessibility, reflective of a fundamental shift in underlying molecular phenotypes. Furthermore, gene expression from the ilea of a treatment-naïve cohort of paediatric patients with CD could be similarly subdivided into colon-like and ileum-like classes. Finally, expression patterns within these CD subclasses highlight large-scale differences in the immune response and aspects of cellular metabolism, and were associated with multiple clinical phenotypes describing disease behaviour, including rectal disease and need for colectomy. CONCLUSIONS: Our results strongly suggest that these molecular signatures define two clinically relevant forms of CD irrespective of tissue sampling location, patient age or treatment status.


Asunto(s)
Enfermedad de Crohn/genética , Adulto , Factores de Edad , Estudios de Casos y Controles , Niño , Colon/metabolismo , Enfermedad de Crohn/clasificación , Enfermedad de Crohn/metabolismo , Enfermedad de Crohn/terapia , Femenino , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Íleon/metabolismo , Masculino , Fenotipo , Análisis de Componente Principal , Pronóstico
5.
Environ Health Perspect ; 125(10): 107006, 2017 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-29038090

RESUMEN

BACKGROUND: The damaging effects of exposure to environmental toxicants differentially affect genetically distinct individuals, but the mechanisms contributing to these differences are poorly understood. Genetic variation affects the establishment of the gene regulatory landscape and thus gene expression, and we hypothesized that this contributes to the observed heterogeneity in individual responses to exogenous cellular insults. OBJECTIVES: We performed an in vivo study of how genetic variation and chromatin organization may dictate susceptibility to DNA damage, and influence the cellular response to such damage, caused by an environmental toxicant. MATERIALS AND METHODS: We measured DNA damage, messenger RNA (mRNA) and microRNA (miRNA) expression, and genome-wide chromatin accessibility in lung tissue from two genetically divergent inbred mouse strains, C57BL/6J and CAST/EiJ, both in unexposed mice and in mice exposed to a model DNA-damaging chemical, 1,3-butadiene. RESULTS: Our results showed that unexposed CAST/EiJ and C57BL/6J mice have very different chromatin organization and transcription profiles in the lung. Importantly, in unexposed CAST/EiJ mice, which acquired relatively less 1,3-butadiene-induced DNA damage, we observed increased transcription and a more accessible chromatin landscape around genes involved in detoxification pathways. Upon chemical exposure, chromatin was significantly remodeled in the lung of C57BL/6J mice, a strain that acquired higher levels of 1,3-butadiene-induced DNA damage, around the same genes, ultimately resembling the molecular profile of CAST/EiJ. CONCLUSIONS: These results suggest that strain-specific changes in chromatin and transcription in response to chemical exposure lead to a "compensation" for underlying genetic-driven interindividual differences in the baseline chromatin and transcriptional state. This work represents an example of how chemical and environmental exposures can be evaluated to better understand gene-by-environment interactions, and it demonstrates the important role of chromatin response in transcriptomic changes and, potentially, in deleterious effects of exposure. https://doi.org/10.1289/EHP1937.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Butadienos/toxicidad , Daño del ADN , Transcripción Genética/efectos de los fármacos , Animales , Cromatina , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos
6.
PLoS Biol ; 14(3): e1002391, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26943850

RESUMEN

The ecologically significant shift in developmental strategy from planktotrophic (feeding) to lecithotrophic (nonfeeding) development in the sea urchin genus Heliocidaris is one of the most comprehensively studied life history transitions in any animal. Although the evolution of lecithotrophy involved substantial changes to larval development and morphology, it is not known to what extent changes in gene expression underlie the developmental differences between species, nor do we understand how these changes evolved within the context of the well-defined gene regulatory network (GRN) underlying sea urchin development. To address these questions, we used RNA-seq to measure expression dynamics across development in three species: the lecithotroph Heliocidaris erythrogramma, the closely related planktotroph H. tuberculata, and an outgroup planktotroph Lytechinus variegatus. Using well-established statistical methods, we developed a novel framework for identifying, quantifying, and polarizing evolutionary changes in gene expression profiles across the transcriptome and within the GRN. We found that major changes in gene expression profiles were more numerous during the evolution of lecithotrophy than during the persistence of planktotrophy, and that genes with derived expression profiles in the lecithotroph displayed specific characteristics as a group that are consistent with the dramatically altered developmental program in this species. Compared to the transcriptome, changes in gene expression profiles within the GRN were even more pronounced in the lecithotroph. We found evidence for conservation and likely divergence of particular GRN regulatory interactions in the lecithotroph, as well as significant changes in the expression of genes with known roles in larval skeletogenesis. We further use coexpression analysis to identify genes of unknown function that may contribute to both conserved and derived developmental traits between species. Collectively, our results indicate that distinct evolutionary processes operate on gene expression during periods of life history conservation and periods of life history divergence, and that this contrast is even more pronounced within the GRN than across the transcriptome as a whole.


Asunto(s)
Redes Reguladoras de Genes , Erizos de Mar/crecimiento & desarrollo , Animales , Linaje de la Célula , Evolución Molecular , Conducta Alimentaria , Tracto Gastrointestinal/crecimiento & desarrollo , Perfilación de la Expresión Génica , Larva/crecimiento & desarrollo , Sistema Nervioso/crecimiento & desarrollo , Filogenia , Erizos de Mar/genética , Erizos de Mar/metabolismo , Selección Genética , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...