Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mBio ; 14(4): e0148223, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37486132

RESUMEN

Epithelial colonization is a critical first step in bacterial pathogenesis. Staphylococcus aureus can utilize several host factors to associate with cells, including α5ß1 integrin and heparan sulfate proteoglycans, such as the syndecans. Here, we demonstrate that a partner protein of both integrins and syndecans, the host membrane adapter protein tetraspanin CD9, is essential for syndecan-mediated staphylococcal adhesion. Fibronectin is also essential in this process, while integrins are only critical for post-adhesion entry into human epithelial cells. Treatment of epithelial cells with CD9-derived peptide or heparin caused significant reductions in staphylococcal adherence, dependent on both CD9 and syndecan-1. Exogenous fibronectin caused a CD9-dependent increase in staphylococcal adhesion, whereas blockade of ß1 integrins did not affect adhesion but did reduce the subsequent internalization of adhered bacteria. CD9 disruption or deletion increased ß1 integrin-mediated internalization, suggesting that CD9 coordinates sequential staphylococcal adhesion and internalization. CD9 controls staphylococcal adhesion through syndecan-1, using a mechanism that likely requires CD9-mediated syndecan organization to correctly display fibronectin at the host cell surface. We propose that CD9-derived peptides or heparin analogs could be developed as anti-adhesion treatments to inhibit the initial stages of staphylococcal pathogenesis. IMPORTANCE Staphylococcus aureus infection is a significant cause of disease and morbidity. Staphylococci utilize multiple adhesion pathways to associate with epithelial cells, including interactions with proteoglycans or ß1 integrins through a fibronectin bridge. Interference with another host protein, tetraspanin CD9, halves staphylococcal adherence to epithelial cells, although CD9 does not interact directly with bacteria. Here, we define the role of CD9 in staphylococcal adherence and uptake, observing that CD9 coordinates syndecan-1, fibronectin, and ß1 integrins to allow efficient staphylococcal infection. Two treatments that disrupt this action are effective and may provide an alternative to antibiotics. We provide insights into the mechanisms that underlie staphylococcal infection of host cells, linking two known adhesion pathways together through CD9 for the first time.


Asunto(s)
Infecciones Estafilocócicas , Sindecano-1 , Humanos , Sindecano-1/genética , Fibronectinas/metabolismo , Adhesión Celular , Integrinas , Proteínas de la Membrana , Integrina beta1/metabolismo , Heparina , Tetraspaninas , Tetraspanina 29
2.
Ocul Surf ; 32: 211-218, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37406881

RESUMEN

Pseudomonas aeruginosa is a leading cause of corneal infection both within India and globally, often causing a loss of vision. Increasing antimicrobial resistance among the bacteria is making its treatment more difficult. Preventing initial bacterial adherence to the host membrane has been explored here to reduce infection of the cornea. Synthetic peptides derived from human tetraspanin CD9 have been shown to reduce infection in corneal cells both in vitro, ex vivo and in vivo. We found constitutive expression of CD9 in immortalized human corneal epithelial cells by flow cytometry and immunocytochemistry. The synthetic peptides derived from CD9 significantly reduced bacterial adherence to cultured corneal epithelial cells and ex vivo human cadaveric corneas as determined by colony forming units. The peptides also significantly reduced bacterial burden in a murine model of Pseudomonas keratitis and lowered the cellular infiltration in the corneal stroma. Additionally, the peptides aided corneal wound healing in uninfected C57BL/6 mice compared to control mice. These potential therapeutics had no effect on cell viability or proliferation of corneal epithelial cells and have the potential to be developed as an alternative therapeutic intervention.

3.
J Dermatol Sci ; 105(2): 105-112, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35101350

RESUMEN

BACKGROUND: Elevated protease activity is a characteristic feature of chronic wounds, where the inflammatory phase of wound healing is prolonged. The choice of dressings in treatment of chronic wounds can change the nature of the wound base and have a significant impact on healing. OBJECTIVE: To evaluate the impact of oxidised regenerated cellulose/collagen dressings on Staphylococcal-mediated protease activity in an inflamed wound model. METHODS: We developed an in vitro 3D inflamed wound model, and simulated inflammation by exposing the models to Staphylococcal spent culture supernatant. Protease activity and wound healing were assessed in the presence/absence of the dressings. RESULTS: Histological analysis of the wound model revealed two distinct layers, an epidermal and dermal layer, similar to the organisation of human skin. Inflammation with Staphylococcal spent culture supernatant elevated protease levels by 1.7x and consequently prevented the wound from progressing to the proliferative phase of healing, without having a negative effect on cell viability. Adding a collagen dressing, known to have non-specific protease modulating properties, reduced Staphylococcal-mediated protease activity back to baseline, with a concomitant reduction in wound closure time. Inflamed wounds thus resembled unwounded skin after 10 days of treatment with the dressings. CONCLUSION: Our findings support the further evaluation and use of oxidised regenerated cellulose/collagen dressings for inflamed, non-healing wounds in the clinical setting. The model used in this study has the potential to be applied in preclinical research; to test wound dressing performance, such as healing and cell viability, and to also assess key markers of inflammation.


Asunto(s)
Vendajes , Celulosa Oxidada , Cicatrización de Heridas , Celulosa Oxidada/farmacología , Celulosa Oxidada/uso terapéutico , Colágeno , Humanos , Péptido Hidrolasas
4.
ACS Infect Dis ; 6(4): 703-714, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32058691

RESUMEN

The role of molecular arrangement of hydrophobic and hydrophilic groups for designing membrane-active molecules remains largely ambiguous. To explore this aspect, herein we report a series of membrane-active small molecules by varying the spatial distribution of hydrophobic groups. The two terminal amino groups of linear triamines such as diethylene triamine, bis(trimethylene)triamine, and bis(hexamethylene)triamine were conjugated with cationic amino acids bearing variable side chain hydrophobicity (such as diaminobutyric acid, ornithine, and lysine). The hydrophobicity was also modulated through conjugation of different long chain fatty acids with the central secondary amino group of the triamine. Molecules with constant backbone hydrophobicity displayed an enhanced antibacterial activity and decreased hemolytic activity upon increasing the side chain hydrophobicity of amino acids. On the other hand, increased hydrophobicity in the backbone introduced a slight hemolytic activity but a higher increment in antibacterial activity, resulting in better selective antibacterial compounds. The optimized lead compound derived from structure-activity-relationship (SAR) studies was the dodecanoyl analogue of a lysine series of compounds consisting of bis(hexamethylene)triamine as the backbone. This compound was active against various Gram-positive and Gram-negative bacteria at a low concentration (MIC ranged between 3.1 and 6.3 µg/mL) and displayed low toxicity toward mammalian cells (HC50 = 890 µg/mL and EC50 against HEK = 85 µg/mL). Additionally, it was able to kill metabolically inactive bacterial cells and eradicate preformed biofilms of MRSA. This compound showed excellent activity in a mouse model of skin infection with reduction of ∼4 log MRSA burden at 40 mg/kg dose without any sign of skin toxicity even at 200 mg/kg. More importantly, it revealed potent efficacy in an ex vivo model of human skin infection (with reduction of 85% MRSA burden at 50 µg/mL), which indicates great potential of the compound as an antibacterial agent to treat skin infections.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Interacciones Hidrofóbicas e Hidrofílicas , Enfermedades Cutáneas Bacterianas/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/química , Aminoácidos/química , Animales , Antibacterianos/química , Femenino , Células HEK293 , Humanos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Relación Estructura-Actividad
5.
Trends Microbiol ; 27(4): 323-338, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30683453

RESUMEN

As more antibiotics are rendered ineffective by drug-resistant bacteria, focus must be shifted towards alternative therapies for treating infections. Although several alternatives already exist in nature, the challenge is to implement them in clinical use. Advancements within biotechnology, genetic engineering, and synthetic chemistry have opened up new avenues towards the search for therapies that can substitute for antibiotics. This review provides an introduction to the various promising approaches that have been adopted in this regard. Whilst the use of bacteriophages and antibodies has been partly implemented, other promising strategies, such as probiotics, lysins, and antimicrobial peptides, are in various stages of development. Propitious concepts such as genetically modified phages, antibacterial oligonucleotides, and CRISPR-Cas9 are also discussed.


Asunto(s)
Antibacterianos/uso terapéutico , Infecciones Bacterianas/terapia , Terapia Biológica/métodos , Farmacorresistencia Bacteriana , Animales , Anticuerpos Monoclonales/uso terapéutico , Péptidos Catiónicos Antimicrobianos/uso terapéutico , Bacteriocinas/uso terapéutico , Bacteriófagos , Biotecnología , Sistemas CRISPR-Cas , Modelos Animales de Enfermedad , Farmacorresistencia Bacteriana/efectos de los fármacos , Trasplante de Microbiota Fecal , Ingeniería Genética , Humanos , Microbiota , Oligonucleótidos/uso terapéutico , Terapia de Fagos/métodos , Probióticos/uso terapéutico
6.
J Mater Sci Mater Med ; 26(5): 176, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25893386

RESUMEN

The opportunistic pathogen Pseudomonas aeruginosa is a significant contributor to recalcitrant multi-drug resistant infections. In a vigorous search for alternative therapeutic approaches, the communication system used by this bacterium to synchronise the expression of genes involved in pathogenicity has been identified as a potential target. Poly(ε-lysine) dendrons, composed of three branching generations, were examined herein for their anti-virulence potential and ability to disperse within P. a eruginosa biofilms. These hyperbranched macromolecules reduced attachment and biomass production under different nutrient growth conditions, and at concentrations that were not lethal to planktonic cells (0.2, 0.4 and 0.8 mg/mL). Fluorescent labelling revealed the intracellular localisation and cell-penetrating capacity of the dendron, and showed the rapid uptake and release of unexploited dendron from pre-established P. a eruginosa biofilms. Additionally, the dendron induced complete attenuation of LasA protease, a marker of quorum sensing inactivation, by preventing its accumulation in the external environment. This study thus demonstrates the anti-virulence potential of this class of macromolecules, and could represent a novel therapeutic approach for the treatment of antibiotic-resistant P. a eruginosa infections.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Polilisina/química , Polilisina/farmacología , Pseudomonas aeruginosa/fisiología , Percepción de Quorum/fisiología , Antibacterianos/química , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Adhesión Celular/fisiología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Dendrímeros/química , Dendrímeros/farmacología , Ensayo de Materiales , Pseudomonas aeruginosa/efectos de los fármacos , Percepción de Quorum/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...