Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 14(9): 11919-11926, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35225596

RESUMEN

The complex behavior of the simplest atomic-scale conductors indicates that the electrode structure itself is significant in the design of future nanoscale devices. In this study, the structural asymmetry of metallic atomic contacts formed between two macroscopic Au electrodes at room temperature was investigated. Characteristic signatures of the structural asymmetries were detected by fast current-voltage (I-V) measurements with a time resolution of approximately 100 µs. Statistical analysis of more than 300,000 I-V curves obtained from more than 1000 contact-stretching processes demonstrates that the current rectification properties are correlated with the conductance of the nanocontacts. A substantial suppression of the variation in current rectification was observed for the atomic contacts with integer multiples of the conductance quantum. Statistical analysis of the time-resolved I-V curves revealed that the current rectification variations increased significantly from 500 µs onward before the breakage of the atomic contacts. Ab initio atomistic simulations of the stretching processes and corresponding I-V characteristics confirmed the magnitude of the rectification and related it to the structural asymmetries in the breakdown process of the junctions. Overall, we provide a better understanding of the interplay between geometric and electronic structures at atomically defined metal-metal interfaces by probing charge transport properties in extremely sensitive nanocontacts.

2.
Phys Chem Chem Phys ; 22(8): 4544-4548, 2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32048668

RESUMEN

A single-molecule junction of 1,4-di(4-pyridyl)benzene (DPB) was prepared in a nano-gap between two Au electrodes using the scanning tunnelling microscopy-based break junction method (STM-BJ). Electric conductance and current versus bias voltage (I-V) measurements during the pulling and pushing processes of DPB single-molecule junctions revealed that high (H) and low (L) conductance states formed in both the pulling and pushing processes. Analysis of the I-V curves based on a single-level model indicated that the difference in conductivity of the H and L states mainly arises from high and low metal-molecule electric coupling in the junction. We demonstrated the controllable formation of H and L conductance states by simply tuning the velocity of electrode displacement in the pushing process. In the pulling process, both H and L states formed regardless of the velocity (v) of electrode displacement, while in the pushing process, H and L states could be selectively fabricated by using low (v = 16 nm s-1) and high (v = 64 nm s-1) velocities of displacement, respectively. This study provides a simple approach to selectively fabricate high and low conductance states by fine tuning of the electrode displacement.

3.
Micromachines (Basel) ; 9(2)2018 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-30393343

RESUMEN

The relationship between the current through an electronic device and the voltage across its terminals is a current⁻voltage characteristic (I⁻V) that determine basic device performance. Currently, I⁻V measurement on a single-molecule scale can be performed using break junction technique, where a single molecule junction can be prepared by trapping a single molecule into a nanogap between metal electrodes. The single-molecule I⁻Vs provide not only the device performance, but also reflect information on energy dispersion of the electronic state and the electron-molecular vibration coupling in the junction. This mini review focuses on recent representative studies on I⁻Vs of the single molecule junctions that cover investigation on the single-molecule diode property, the molecular vibration, and the electronic structure as a form of transmission probability, and electronic density of states, including the spin state of the single-molecule junctions. In addition, thermoelectronic measurements based on I⁻Vs and identification of the charged carriers (i.e., electrons or holes) are presented. The analysis in the single-molecule I⁻Vs provides fundamental and essential information for a better understanding of the single-molecule science, and puts the single molecule junction to more practical use in molecular devices.

4.
J Am Chem Soc ; 140(10): 3760-3767, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29470910

RESUMEN

Structural and electronic detail at the metal-molecule interface has a significant impact on the charge transport across the molecular junctions, but its precise understanding and control still remain elusive. On the single-molecule scale, the metal-molecule interface structures and relevant charge transport properties are subject to fluctuation, which contain the fundamental science of single-molecule transport and implication for manipulability of the transport properties in electronic devices. Here, we present a comprehensive approach to investigate the fluctuation in the metal-molecule interface in single-molecule junctions, based on current-voltage ( I- V) measurements in combination with first-principles simulation. Contrary to conventional molecular conductance studies, this I- V approach provides a correlated statistical description of both the degree of electronic coupling across the metal-molecule interface and the molecular orbital energy level. This statistical approach was employed to study fluctuation in single-molecule junctions of 1,4-butanediamine (DAB), pyrazine (PY), 4,4'-bipyridine (BPY), and fullerene (C60). We demonstrate that molecular-dependent fluctuation of σ-, π-, and π-plane-type interfaces can be captured by analyzing the molecular orbital (MO) energy level under mechanical perturbation. While the MO level of DAB with the σ-type interface shows weak distance dependence and fluctuation, the MO level of PY, BPY, and C60 features unique distance dependence and molecular-dependent fluctuation against the mechanical perturbation. The MO level of PY and BPY with the σ+π-type interface increases with the increase in the stretch distance. In contrast, the MO level of C60 with the π-plane-type interface decreases with the increase in the stretching perturbation. This study provides an approach to resolve the structural and electronic fluctuation in the single-molecule junctions and insight into the molecular-dependent fluctuation in the junctions.

5.
Chem Asian J ; 12(4): 440-445, 2017 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-28035743

RESUMEN

The electronic structure of molecular junctions has a significant impact on their transport properties. Despite the decisive role of the electronic structure, a complete characterization of the electronic structure remains a challenge. This is because there is no straightforward way of measuring electron spectroscopy for an individual molecule trapped in a nanoscale gap between two metal electrodes. Herein, a comprehensive approach to obtain a detailed description of the electronic structure in single-molecule junctions based on the analysis of current-voltage (I-V) and thermoelectric characteristics is described. It is shown that the electronic structure of the prototypical C60 single-molecule junction can be resolved by analyzing complementary results of the I-V and thermoelectric measurement. This combined approach confirmed that the C60 single-molecule junction was highly conductive with molecular electronic conductances of 0.033 and 0.003 G0 and a molecular Seebeck coefficient of -12 µV K-1 . In addition, we revealed that charge transport was mediated by a LUMO whose energy level was located 0.5≈0.6 eV above the Fermi level of the Au electrode.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...