Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Mol Neurosci ; 12: 232, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31611773

RESUMEN

A fundamental question that underlies the proper wiring and function of the nervous system is how axon extension stops during development. However, our mechanistic understanding of axon stopping is currently poor. The stereotypic development of the Drosophila mushroom body (MB) provides a unique system in which three types of anatomically distinct neurons (γ, α'/ß', and α/ß) develop and interact to form a complex neuronal structure. All three neuronal types innervate the ipsi-lateral side and do not cross the midline. Here we find that Plum, an immunoglobulin (Ig) superfamily protein that we have previously shown to function as a TGF-ß accessory receptor, is required within MB α/ß neurons for their midline stopping. Overexpression of Plum within MB neurons is sufficient to induce retraction of α/ß axons. As expected, rescue experiments revealed that Plum likely functions in α/ß neurons and mediates midline stopping via the downstream effector RhoGEF2. Finally, we have identified glial-derived Myoglianin (Myo) as the major TGF-ß ligand that instructs midline stopping of MB neurons. Taken together, our study strongly suggests that TGF-ß signals originating from the midline facilitate midline stopping of α/ß neuron in a Plum dependent manner.

2.
Dev Cell ; 47(1): 38-52.e6, 2018 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-30300589

RESUMEN

Developmental neuronal remodeling is an evolutionarily conserved mechanism required for precise wiring of nervous systems. Despite its fundamental role in neurodevelopment and proposed contribution to various neuropsychiatric disorders, the underlying mechanisms are largely unknown. Here, we uncover the fine temporal transcriptional landscape of Drosophila mushroom body γ neurons undergoing stereotypical remodeling. Our data reveal rapid and dramatic changes in the transcriptional landscape during development. Focusing on DNA binding proteins, we identify eleven that are required for remodeling. Furthermore, we sequence developing γ neurons perturbed for three key transcription factors required for pruning. We describe a hierarchical network featuring positive and negative feedback loops. Superimposing the perturbation-seq on the developmental expression atlas highlights a framework of transcriptional modules that together drive remodeling. Overall, this study provides a broad and detailed molecular insight into the complex regulatory dynamics of developmental remodeling and thus offers a pipeline to dissect developmental processes via RNA profiling.


Asunto(s)
Cuerpos Pedunculados/embriología , Plasticidad Neuronal/genética , Plasticidad Neuronal/fisiología , Animales , Axones/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Metamorfosis Biológica/fisiología , Cuerpos Pedunculados/metabolismo , Neuronas/metabolismo , Análisis de Secuencia de ARN , Factores de Transcripción/metabolismo , Transcriptoma
3.
Dev Cell ; 31(4): 461-73, 2014 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-25458013

RESUMEN

Developmental axon pruning is essential for wiring the mature nervous system, but its regulation remains poorly understood. Here we show that the endosomal-lysosomal pathway regulates developmental pruning of Drosophila mushroom body γ neurons. We demonstrate that the UV radiation resistance-associated gene (UVRAG) functions together with all core components of the phosphatidylinositol 3-kinase class III (PI3K-cIII) complex to promote pruning via the endocytic pathway. By studying several PI(3)P binding proteins, we found that Hrs, a subunit of the ESCRT-0 complex, required for multivesicular body (MVB) maturation, is essential for normal pruning progression. Thus, we hypothesized the existence of an inhibitory signal that needs to be downregulated. Finally, our data suggest that the Hedgehog receptor, Patched, is the source of this inhibitory signal likely functioning in a Smo-independent manner. Taken together, our in vivo study demonstrates that the PI3K-cIII complex is essential for downregulating Patched via the endosomal-lysosomal pathway to execute axon pruning.


Asunto(s)
Axones/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Endosomas/metabolismo , Lisosomas/metabolismo , Neuronas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Regulación hacia Abajo , Drosophila melanogaster/embriología , Endocitosis/fisiología , Cuerpos Pedunculados/metabolismo , Neurogénesis , Unión Proteica , Transducción de Señal
4.
Curr Biol ; 22(19): 1774-82, 2012 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-22921367

RESUMEN

BACKGROUND: The molecular mechanisms that determine axonal growth potential are poorly understood. Intrinsic growth potential decreases with age, and thus one strategy to identify molecular pathways controlling intrinsic growth potential is by studying developing young neurons. The programmed and stereotypic remodeling of Drosophila mushroom body (MB) neurons during metamorphosis offers a unique opportunity to uncover such mechanisms. Despite emerging insights into MB γ-neuron axon pruning, nothing is known about the ensuing axon re-extension. RESULTS: Using mosaic loss of function, we found that the nuclear receptor UNF (Nr2e3) is cell autonomously required for the re-extension of MB γ-axons following pruning, but not for the initial growth or guidance of any MB neuron type. We found that UNF promotes this process of developmental axon regrowth via the TOR pathway as well as a late axon guidance program via an unknown mechanism. We have thus uncovered a novel developmental program of axon regrowth that is cell autonomously regulated by the UNF nuclear receptor and the TOR pathway. CONCLUSIONS: Our results suggest that UNF activates neuronal re-extension during development. Taken together, we show that axon growth during developmental remodeling is mechanistically distinct from initial axon outgrowth. Due to the involvement of the TOR pathway in axon regeneration following injury, our results also suggests that developmental regrowth shares common molecular mechanisms with regeneration following injury.


Asunto(s)
Axones/fisiología , Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Regeneración Nerviosa/fisiología , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/genética , Metamorfosis Biológica/fisiología , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Cuerpos Pedunculados/fisiología , Neuropéptidos/genética , Neuropéptidos/metabolismo , Proteína Homóloga de Ras Enriquecida en el Cerebro , Receptores Citoplasmáticos y Nucleares/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA