Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Behav Pharmacol ; 32(1): 2-8, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33399294

RESUMEN

The pyridobenzoxazepine compound, 5-(4-methylpiperazin-1-yl)-8-chloro-pyrido[2,3-b][1,5]benzoxazepine (JL13), has been developed as a potential antipsychotic drug. We tested the hypothesis that JL13 is efficacious in both dopaminergic and glutamatergic animal models of schizophrenia. We investigated JL13 for its efficacy to prevent cocaine- and ketamine-induced hyperlocomotion and MK-801-induced deficits in prepulse inhibition (PPI) of the startle reflex. Male Swiss mice received injections of JL13 (0.1-10 mg/kg) and were tested in the open field for basal locomotion. In separate experiments, the animals received injections of JL13 (0.1-3 mg/kg) followed by cocaine (10 mg/kg), ketamine (60 mg/kg), or MK-801 (0.5 mg/kg) and were tested in the open field for hyperlocomotion. In addition, it was also tested if JL13 prevented MK-801-induced disruption of PPI. Only the highest dose of JL13 impaired spontaneous locomotion, suggesting its favorable profile regarding motor side effects. At doses that did not impair basal motor activity, JL13 prevented cocaine-, ketamine-, and MK-801-induced hyperlocomotion. Moreover, JL13 prevented MK-801-induced disruption of PPI. Extending previous findings, this study shows that JL13 exerts antipsychotic-like activity in both dopaminergic and glutamatergic models. This compound has a favorable pharmacological profile, similar to second-generation antipsychotics.


Asunto(s)
Antipsicóticos/farmacología , Oxazepinas/farmacología , Piperazinas/farmacología , Piridinas/farmacología , Esquizofrenia/tratamiento farmacológico , Animales , Antipsicóticos/administración & dosificación , Cocaína/farmacología , Modelos Animales de Enfermedad , Maleato de Dizocilpina/farmacología , Dopamina/metabolismo , Relación Dosis-Respuesta a Droga , Ácido Glutámico/metabolismo , Ketamina/farmacología , Locomoción/efectos de los fármacos , Masculino , Ratones , Oxazepinas/administración & dosificación , Piperazinas/administración & dosificación , Piridinas/administración & dosificación , Reflejo de Sobresalto/efectos de los fármacos , Esquizofrenia/fisiopatología
2.
Br J Pharmacol ; 176(10): 1541-1551, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30101419

RESUMEN

BACKGROUND AND PURPOSE: The endocannabinoids anandamide and 2-arachidonoylglycerol (2-AG) bind to CB1 and CB2 cannabinoid receptors in the brain and modulate the mesolimbic dopaminergic pathway. This neurocircuitry is engaged by psychostimulant drugs, including cocaine. Although CB1 receptor antagonism and CB2 receptor activation are known to inhibit certain effects of cocaine, they have been investigated separately. Here, we tested the hypothesis that there is a reciprocal interaction between CB1 receptor blockade and CB2 receptor activation in modulating behavioural responses to cocaine. EXPERIMENTAL APPROACH: Male Swiss mice received i.p. injections of cannabinoid-related drugs followed by cocaine, and were then tested for cocaine-induced hyperlocomotion, c-Fos expression in the nucleus accumbens and conditioned place preference. Levels of endocannabinoids after cocaine injections were also analysed. KEY RESULTS: The CB1 receptor antagonist, rimonabant, and the CB2 receptor agonist, JWH133, prevented cocaine-induced hyperlocomotion. The same results were obtained by combining sub-effective doses of both compounds. The CB2 receptor antagonist, AM630, reversed the inhibitory effects of rimonabant in cocaine-induced hyperlocomotion and c-Fos expression in the nucleus accumbens. Selective inhibitors of anandamide and 2-AG hydrolysis (URB597 and JZL184, respectively) failed to modify this response. However, JZL184 prevented cocaine-induced hyperlocomotion when given after a sub-effective dose of rimonabant. Cocaine did not change brain endocannabinoid levels. Finally, CB2 receptor blockade reversed the inhibitory effect of rimonabant in the acquisition of cocaine-induced conditioned place preference. CONCLUSION AND IMPLICATIONS: The present data support the hypothesis that CB1 and CB2 receptors work in concert with opposing functions to modulate certain addiction-related effects of cocaine. LINKED ARTICLES: This article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc.


Asunto(s)
Ácidos Araquidónicos/metabolismo , Cocaína/farmacología , Endocannabinoides/metabolismo , Glicéridos/metabolismo , Alcamidas Poliinsaturadas/metabolismo , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB2/agonistas , Recompensa , Animales , Conducta Animal/efectos de los fármacos , Agonistas de Receptores de Cannabinoides/farmacología , Antagonistas de Receptores de Cannabinoides/farmacología , Condicionamiento Clásico , Masculino , Ratones , Actividad Motora/efectos de los fármacos , Unión Proteica , Proteínas Proto-Oncogénicas c-fos/metabolismo
3.
Naunyn Schmiedebergs Arch Pharmacol ; 391(7): 761-768, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29691608

RESUMEN

The monoamine stabilizer (3S)-3-[3-(methenesulfonyl)phenyl]-1-propylpiperidine hidrochloride [(-)-OSU6162] is a promising compound for the treatment of neurological and psychiatric disorders, such as schizophrenia. Here, we tested the hypothesis that (-)-OSU6162 prevents hyperlocomotion and sensorimotor deficits in prepulse inhibition of the startle response (PPI) induced by psychomimetic drugs. Male Swiss mice received injections of (-)-OSU6162 (1, 3, 10, or 30 mg/kg), and their motor responses were investigated in the open field and in the catalepsy tests, which predicts liability to induce sedation and extrapyramidal side effects, respectively. Next, in independent experiments, this compound was evaluated for its efficacy to prevent hyperlocomotion induced by cocaine (10 mg/kg; dopamine transporter inhibitor) or ketamine (60 mg/kg; glutamate NMDA channel blocker) in the open field. Finally, we tested if (-)-OSU6162 prevents PPI disruption induced by MK-801 (0.5 mg/kg; glutamate NMDA channel blocker). (-)-OSU6162 induced neither locomotion impairment nor catalepsy. This compound prevented cocaine-induced hyperlocomotion at the doses of 10 and 30 mg/kg and ketamine-induced hyperlocomotion at the doses of 1 and 3 mg/kg. In the sensorimotor test, (-)-OSU6162 failed to reverse MK-801-induced PPI deficits. The dopamine stabilizer (-)-OSU6162 prevents the hyperactivity induced by dopaminergic and anti-glutamatergic drugs at doses that preserve motor functions, although it failed in the PPI test. Its therapeutic potential for specific symptoms of schizophrenia warrants further investigation in both preclinical and clinical studies.


Asunto(s)
Antipsicóticos/farmacología , Piperidinas/farmacología , Animales , Conducta Animal/efectos de los fármacos , Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Ketamina/farmacología , Locomoción/efectos de los fármacos , Masculino , Ratones , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Reflejo de Sobresalto/efectos de los fármacos , Esquizofrenia/tratamiento farmacológico
4.
Psychopharmacology (Berl) ; 231(4): 663-72, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24101156

RESUMEN

RATIONALE: Nitric oxide (NO) modulates the dopamine uptake and release processes and appears to be implicated in dopamine-related pathologies, such as schizophrenia. However, it is unclear whether there is excess or deficient NO synthesis in schizophrenia pathophysiology. Analyses of the intracellular pathways downstream of NO system activation have identified the cyclic nucleotide cyclic guanosine monophosphate (cGMP) as a possible target for drug development. Defects in the sensorimotor gating of the neural mechanism underlying the integration and processing of sensory information have been detected across species through prepulse inhibition (PPI). OBJECTIVES: The aim of this study was to investigate the effects of NO/cGMP increase on sensorimotor gating modulation during dopamine hyperfunction. METHODS: Mice were treated with NO donors and subjected to the PPI test. Treatment with the NO donor sodium nitroprusside was preceded by pretreatment with a soluble guanylate cyclase (sGC) inhibitor. Additionally, the mice were treated with NO donors and phosphodiesterases inhibitors prior to amphetamine treatment. RESULTS: Pretreatment with the NO donors enhanced the PPI response and attenuated the amphetamine-disruptive effects on the PPI. The sGC inhibitor did not modify the sodium nitroprusside effects. Additionally, the cGMP increase induced by a specific phosphodiesterase inhibitor did not modify the amphetamine-disruptive effect. CONCLUSIONS: This study provides the first demonstration that an increase in NO can improve the PPI response and block the amphetamine-disruptive effects on the PPI response. Our data are consistent with recent clinical results. However, these effects do not appear to be related to an increase in cGMP levels, and further investigation is thus required.


Asunto(s)
GMP Cíclico/metabolismo , Inhibición Psicológica , Óxido Nítrico/metabolismo , Reflejo de Sobresalto/fisiología , Filtrado Sensorial/fisiología , Estimulación Acústica , Anfetamina/farmacología , Animales , AMP Cíclico/metabolismo , Dopaminérgicos/farmacología , Relación Dosis-Respuesta a Droga , Guanilato Ciclasa/antagonistas & inhibidores , Guanilato Ciclasa/metabolismo , Masculino , Ratones , Pruebas Neuropsicológicas , Donantes de Óxido Nítrico/farmacología , Nitroprusiato/farmacología , Inhibidores de Fosfodiesterasa/farmacología , Hidrolasas Diéster Fosfóricas/metabolismo , Purinonas/farmacología , Reflejo de Sobresalto/efectos de los fármacos , Filtrado Sensorial/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...