Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Genet Genomics ; 299(1): 21, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38429502

RESUMEN

Wide hybridizations across species and genera have been employed to enhance agriculturally important traits in crops. Within the tribe Maleae of the Rosaceae family, different genera and species exhibit several traits useful for increasing diversity and gene pool through hybridization. This study aimed to develop and characterize intergeneric hybrid individuals between Malus and Pyrus. Through seed germination, shoot multiplication, and rooting in vitro, acclimatized seedlings showing vegetative growth on their own roots were obtained from crosses of Malus × domestica pollinated by Pyrus communis, P. bretschneideri, and the Pyrus interspecific hybrid (P. communis × P. pyrifolia). Comparative analysis of leaf morphology, flow cytometry, and molecular genotyping confirmed the hybrid status of the individuals. Genome-wide genotyping revealed that all the hybrid individuals inherited genomic fragments symmetrically from the Malus and Pyrus parents. To the best of our knowledge, this is the first report on the development of intergeneric hybrid seedlings between Malus × domestica and P. bretschneideri. Furthermore, the Pyrus interspecific hybrid individual served as a bridge plant for introducing the genetic background of P. pyrifolia into Malus × domestica. The results of this study provided a crucial foundation for breeding through intergeneric hybridization between Malus and Pyrus, facilitating the incorporation of valuable traits from diverse gene pools.


Asunto(s)
Malus , Pyrus , Rosaceae , Humanos , Malus/genética , Pyrus/genética , Pyrus/metabolismo , Fitomejoramiento , Rosaceae/genética , Hibridación Genética
2.
Planta ; 258(5): 85, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37747516

RESUMEN

MAIN CONCLUSION: For the first time, stone cells in pear and apple pedicel were studied. The lignification of the pedicel outer part was correlated with flesh, and the secondary cell wall biosynthesis genes were activated. Fruit pedicels act as bridges between the fruit and the shoot. They have secondary thickened cell walls that presumably function in mechanical support, water and nutrient transport. Stone cells are cells with a secondary cell wall thickening. In pears, yet not in apples, the stone cells affect the flesh texture. There have been few reports on stone cell formation in pear and apple pedicels; therefore, we studied these cells for the first time. The apple pedicel had few stone cells in the cortex. The formation of stone cells in pear continued until seven weeks after flowering (WAF), and the density was significantly higher than in apple. The stone cell formation degree (SFD) of pear was 3.6-7.1 times higher than that of apple. Total lignin and lignin non-condensed structure (G and S units) content in the pear pedicle outer part was 1.5-2.7 times higher than that of the apple at harvest. The SFD of the pedicel outer part had a positive correlation with the G and S units content of the flesh. The total lignin and G and S units content between flesh and the pedicel outer part were positively correlated. Correlation analysis revealed a positive relationship between fruit and pedicel formation of the stone cells. The WGCNA showed that NST3 was linked to NAC028, MYB46, CESA, POD, LAC, and VSR6. These genes were highly expressed in the outer part of the pear pedicel, while they were suppressed in that issue of the apple at 4 WAF.


Asunto(s)
Malus , Pyrus , Lignina , Malus/genética , Pyrus/genética , Frutas/genética
3.
Biosci Biotechnol Biochem ; 86(10): 1459-1461, 2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-35867877

RESUMEN

Gibberellin-regulated protein (GRP) is a fruit severe allergen. The amounts of GRP expression normalized against actin in peach were determined by reverse transcription-quantitative PCR (RT-qPCR). The results were consistent with those determined by enzyme-linked immunosorbent assay (ELISA). The GRP expression was more evident in flesh than peel and increased rapidly in the maturing period. This approach is applicable to estimate the amount of GRP in other plants.


Asunto(s)
Prunus persica , Actinas/metabolismo , Alérgenos/metabolismo , Antígenos de Plantas/genética , Antígenos de Plantas/metabolismo , Frutas/metabolismo , Giberelinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prunus persica/genética , Prunus persica/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcripción Reversa
4.
Front Plant Sci ; 13: 802203, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35154222

RESUMEN

To gain insights into the genetic mechanisms underlying blooming and petal movement in flowering cherry (Cerasus × yedoensis), we performed time-course RNA-seq analysis of the floral buds and open-flowers of the most popular flowering cherry cultivar, 'Somei-Yoshino.' Independent biological duplicate samples of floral buds and open-flowers were collected from 'Somei-Yoshino' trees grown at three different locations in Japan. RNA-seq reads obtained from floral bud and open-flower samples collected in the current study (in 2019) and in a previous study (in 2017) were aligned against the genome sequence of 'Somei-Yoshino' to quantify gene transcript levels. Clustering analysis of RNA-seq reads revealed dynamic changes in the transcriptome, with genes in seven modules predominantly expressed at specific time points, ranging from 5 weeks before flowering to 2 weeks after flowering. Based on the identified gene modules and Gene Ontology (GO) terms enriched at different floral stages, we speculate that the genetic mechanisms underlying petal movement and flower opening in cherry involve the processes of development, cell wall organization, reproduction, and metabolism, which are executed by genes encoding transcription factors, phytohormones, transporters, and polysaccharide metabolic enzymes. Furthermore, we established a statistical model for cherry bloom forecasting, based on gene expression levels as RNA markers at different time points before flowering.

5.
DNA Res ; 28(6)2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34792565

RESUMEN

To gain genetic insights into the early-flowering phenotype of ornamental cherry, also known as sakura, we determined the genome sequences of two early-flowering cherry (Cerasus × kanzakura) varieties, 'Kawazu-zakura' and 'Atami-zakura'. Because the two varieties are interspecific hybrids, likely derived from crosses between Cerasus campanulata (early-flowering species) and Cerasus speciosa, we employed the haplotype-resolved sequence assembly strategy. Genome sequence reads obtained from each variety by single-molecule real-time sequencing (SMRT) were split into two subsets, based on the genome sequence information of the two probable ancestors, and assembled to obtain haplotype-phased genome sequences. The resultant genome assembly of 'Kawazu-zakura' spanned 519.8 Mb with 1,544 contigs and an N50 value of 1,220.5 kb, while that of 'Atami-zakura' totalled 509.6 Mb with 2,180 contigs and an N50 value of 709.1 kb. A total of 72,702 and 69,528 potential protein-coding genes were predicted in the genome assemblies of 'Kawazu-zakura' and 'Atami-zakura', respectively. Gene clustering analysis identified 2,634 clusters uniquely presented in the C. campanulata haplotype sequences, which might contribute to its early-flowering phenotype. Genome sequences determined in this study provide fundamental information for elucidating the molecular and genetic mechanisms underlying the early-flowering phenotype of ornamental cherry tree varieties and their relatives.


Asunto(s)
Genoma , Prunus , Secuencia de Bases , Mapeo Cromosómico , Haplotipos , Prunus/genética
6.
Plant Reprod ; 34(3): 255-266, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34165636

RESUMEN

KEY MESSAGE: Characterization of hybrid seed failure in Prunus provides insight into conserved or lineage-specific hybrid incompatibility mechanisms in plant species. Postzygotic hybrid incompatibility resulting from a cross between different species involves complex mechanisms occurring at various developmental stages. Embryo arrest, followed by seed abortion, is the first stage of such incompatibility reactions and inhibits hybrid seed development. In Prunus, a rosaceous woody species, some interspecific crosses result in fruit drop during the early stage of fruit development, in which inferior seed development may be accounted for the observed hybrid incompatibility. In this study, we investigated ovule development and the transcriptomes of developing ovules in inter-subgeneric crosses of Prunus. We conducted a cross of Prunus mume (subgenus Prunus), pollinated by P. persica (subgenus Amygdalus), and found that ovule and seed coat degeneration occurs before fruit drop. Transcriptome analysis identified differentially expressed genes enriched in several GO pathways, including organelle development, stimulus response, and signaling. Among these pathways, the organelle-related genes were actively regulated during ovule development, as they showed higher expression in the early stage of interspecific crosses and declined in the later stage, suggesting that the differential regulation of organelle function may induce the degeneration of hybrid ovules. Additionally, genes related to ovule and seed coat development, such as genes encoding AGL-like and auxin response, were differentially regulated in Prunus interspecific crosses. Our results provide histological and molecular information on hybrid seed abortion in Prunus that could be utilized to develop new hybrid crops. Additionally, we compared and discussed transcriptome responses to hybrid seed failure in Prunus and other plant species, which provides insight into conserved or lineage-specific hybrid incompatibility mechanisms in some plant species.


Asunto(s)
Prunus , Rosaceae , Regulación de la Expresión Génica de las Plantas , Óvulo Vegetal/genética , Prunus/genética , Semillas/genética , Transcriptoma
7.
DNA Res ; 28(2)2021 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-33638981

RESUMEN

We analyzed the genome sequence of a Japanese pear (Pyrus pyrifolia) to facilitate its genetics and genomics as well as breeding programs, in which a variety 'Nijisseiki' with superior flesh texture has been used as a parent for most Japanese pear cultivars. De novo assembly of long sequence reads covered 136× of the Japanese pear genome and generated 503.9 Mb contigs consisting of 114 sequences with an N50 value of 7.6 Mb. Contigs were assigned to Japanese pear genetic maps to establish 17 chromosome-scale sequences. In total, 44,876 high-confidence protein-encoding genes were predicted, 84.3% of which were supported by predicted genes and transcriptome data from Japanese pear relatives. As expected, evidence of genome-wide duplication was observed, consistent with related species. This is the first chromosome-scale genome sequence analysis reported for Japanese pear, and this resource will support breeding programs and provide new insights into the physiology and evolutionary history of Japanese pear.


Asunto(s)
Genoma de Planta , Pyrus/genética , Análisis de Secuencia de ADN , Transcriptoma , Cromosomas de las Plantas , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ARN
8.
J Agric Food Chem ; 68(8): 2493-2505, 2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-31976665

RESUMEN

Lignin content, composition, and linkage types were investigated in pear fruit cultivars and related species. Lignin content increased during early stages and then decreased toward ripening in the core and flesh of "Gold Nijisseiki" and "Alexandrine Douillard". The lignin content was highest at harvest in Chinese quince. Only trace amounts of lignin were detected in apple flesh. The lignin content was low in Japanese pears "Ohshu", "Hosui", and "Kosui", and the noncondensed lignin index was high in flesh. The lignin type was guaiacyl-syringyl (GS) in these pears and related species. The S/G ratio at harvest varied widely (0.75-2.64) and increased during early stages and remained constant toward harvest in "Gold Nijisseiki" and "Alexandrine Douillard". "Gold Nijisseiki" and "Alexandrine Douillard" were determined to be G- and S-lignin-rich types, respectively. ß-Aryl ether, phenylcoumaran, and resinol interunit linkage types were detected among monolignol bonds, and ß-Aryl ether units were the main linkages in the pear.


Asunto(s)
Lignina/química , Extractos Vegetales/química , Pyrus/química , Frutas/química , Frutas/clasificación , Estructura Molecular , Pyrus/clasificación
9.
DNA Res ; 26(5): 379-389, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31334758

RESUMEN

We report the phased genome sequence of an interspecific hybrid, the flowering cherry 'Somei-Yoshino' (Cerasus × yedoensis). The sequence data were obtained by single-molecule real-time sequencing technology, split into two subsets based on genome information of the two probable ancestors, and assembled to obtain two haplotype phased genome sequences of the interspecific hybrid. The resultant genome assembly consisting of the two haplotype sequences spanned 690.1 Mb with 4,552 contigs and an N50 length of 1.0 Mb. We predicted 95,076 high-confidence genes, including 94.9% of the core eukaryotic genes. Based on a high-density genetic map, we established a pair of eight pseudomolecule sequences, with highly conserved structures between the two haplotype sequences with 2.4 million sequence variants. A whole genome resequencing analysis of flowering cherries suggested that 'Somei-Yoshino' might be derived from a cross between C. spachiana and either C. speciosa or its relatives. A time-course transcriptome analysis of floral buds and flowers suggested comprehensive changes in gene expression in floral bud development towards flowering. These genome and transcriptome data are expected to provide insights into the evolution and cultivation of flowering cherry and the molecular mechanism underlying flowering.


Asunto(s)
Genoma de Planta , Prunus/genética , Transcriptoma , Secuencia de Bases , ADN de Plantas , Filogenia , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN
10.
Plant Cell Environ ; 39(2): 245-58, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25753986

RESUMEN

Silicon (Si) is generally considered a beneficial element for the growth of higher plants, especially under stress conditions, but the mechanisms remain unclear. Here, we tested the hypothesis that Si improves salt tolerance through mediating important metabolism processes rather than acting as a mere mechanical barrier. Seedlings of sorghum (Sorghum bicolor L.) growing in hydroponic culture were treated with NaCl (100 mm) combined with or without Si (0.83 mm). The result showed that supplemental Si enhanced sorghum salt tolerance by decreasing Na(+) accumulation. Simultaneously, polyamine (PA) levels were increased and ethylene precursor (1-aminocyclopropane-1-carboxylic acid: ACC) concentrations were decreased. Several key PA synthesis genes were up-regulated by Si under salt stress. To further confirm the role of PA in Si-mediated salt tolerance, seedlings were exposed to spermidine (Spd) or a PA synthesis inhibitor (dicyclohexylammonium sulphate, DCHA) combined with salt and Si. Exogenous Spd showed similar effects as Si under salt stress whereas exogenous DCHA eliminated Si-enhanced salt tolerance and the beneficial effect of Si in decreasing Na(+) accumulation. These results indicate that PAs and ACC are involved in Si-induced salt tolerance in sorghum and provide evidence that Si plays an active role in mediating salt tolerance.


Asunto(s)
Poliaminas/metabolismo , Tolerancia a la Sal/efectos de los fármacos , Silicio/farmacología , Sorghum/fisiología , Aminoácidos Cíclicos/metabolismo , Arginina/metabolismo , Bencilaminas/farmacología , Biomasa , Vías Biosintéticas/efectos de los fármacos , Vías Biosintéticas/genética , Clorofila/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glicina/análogos & derivados , Glicina/farmacología , Iones , Metionina/metabolismo , Desarrollo de la Planta/efectos de los fármacos , Desarrollo de la Planta/genética , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Tolerancia a la Sal/genética , Sorghum/efectos de los fármacos , Sorghum/genética , Sorghum/crecimiento & desarrollo , Espermidina/farmacología
11.
Breed Sci ; 64(4): 351-61, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25914590

RESUMEN

Using an F1 population from a cross between Japanese pear (Pyrus pyrifolia Nakai) cultivars 'Akiakari' and 'Taihaku', we performed quantitative trait locus (QTL) analysis of seven fruit traits (harvest time, fruit skin color, flesh firmness, fruit weight, acid content, total soluble solids content, and preharvest fruit drop). The constructed simple sequence repeat-based genetic linkage map of 'Akiakari' consisted of 208 loci and spanned 799 cM; that of 'Taihaku' consisted of 275 loci and spanned 1039 cM. Out of significant QTLs, two QTLs for harvest time, one for fruit skin color, and one for flesh firmness were stably detected in two successive years. The QTLs for harvest time were located at the bottom of linkage group (LG) Tai3 (nearest marker: BGA35) and at the top of LG Tai15 (nearest markers: PPACS2 and MEST050), in good accordance with results of genome-wide association study. The PPACS2 gene, a member of the ACC synthase gene family, may control harvest time, preharvest fruit drop, and fruit storage potential. One major QTL associated with fruit skin color was identified at the top of LG 8. QTLs identified in this study would be useful for marker-assisted selection in Japanese pear breeding programs.

12.
Ann Bot ; 95(4): 685-93, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15655106

RESUMEN

BACKGROUND AND AIMS: In fruit crops, fruit size at harvest is an important aspect of quality. With Japanese pears (Pyrus pyrifolia), later maturing cultivars usually have larger fruits than earlier maturing cultivars. It is considered that the supply of photosynthate during fruit development is a critical determinant of size. To assess the interaction of assimilate supply and early/late maturity of cultivars and its effect on final fruit size, the pattern of carbon assimilate partitioning from spur leaves (source) to fruit and other organs (sinks) during fruit growth was investigated using three genotypes differing in maturation date. METHODS: Partitioning of photosynthate from spur leaves during fruit growth was investigated by exposure of spurs to (13)CO(2) and measurement of the change in (13)C abundance in dry matter with time. Leaf number and leaf area per spur, fresh fruit weight, cell number and cell size of the mesocarp were measured and used to model the development of the spur leaf and fruit. KEY RESULTS: Compared with the earlier-maturing cultivars 'Shinsui' and 'Kousui', the larger-fruited, later-maturing cultivar 'Shinsetsu' had a greater total leaf area per spur, greater source strength (source weight x source specific activity), with more (13)C assimilated per spur and allocated to fruit, smaller loss of (13)C in respiration and export over the season, and longer duration of cell division and enlargement. Histology shows that cultivar differences in final fruit size were mainly attributable to the number of cells in the mesocarp. CONCLUSIONS: Assimilate availability during the period of cell division was crucial for early fruit growth and closely correlated with final fruit size. Early fruit growth of the earlier-maturing cultivars, but not the later-maturing ones, was severely restrained by assimilate supply rather than by sink limitation.


Asunto(s)
Fotosíntesis , Hojas de la Planta/fisiología , Pyrus/crecimiento & desarrollo , Isótopos de Carbono , Marcaje Isotópico/métodos , Japón , Estructuras de las Plantas/fisiología , Pyrus/clasificación , Especificidad de la Especie
13.
J Exp Bot ; 54(393): 2615-22, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14585820

RESUMEN

Modifications to the cell wall of developing and ripening tomato fruit are mediated by cell wall-degrading enzymes, including a beta-d-xylosidase or alpha-l-arabinofuranosidase, which participate in the breakdown of xylans and/or arabinoxylans. The activity of both enzymes was highest during early fruit growth, before decreasing during later development and ripening. Two beta-d-xylosidase cDNAs, designated LeXYL1 and LeXYL2, and an alpha-l-arabinofuranosidase cDNA, designated LeARF1, were obtained. Accumulation of mRNAs for beta-d-xylosidase and alpha-l-arabinofuranosidase was examined during fruit development and ripening. LeARF1 and LeXYL2 genes were relatively highly expressed during fruit development and decreased after the onset of ripening. By contrast, LeXYL1 was not expressed during fruit development, but was expressed later, particularly during over-ripening. The expression of all three genes was also followed in ripening-impaired mutants, Nr, Nr2, nor, and rin of cv. Ailsa Craig fruit. LeXYL2 mRNA was detected in the ripe fruits of all the mutants and its abundance was similar to that in mature green wild-type fruit. By contrast, LEXYL1 mRNA was expressed only in the ripe fruits of the Nr mutant, suggesting that the two beta-d-xylosidase genes are subject to distinct regulatory control during fruit development and ripening. LeARF1 mRNA was detected in ripe fruits of Nr2, nor and rin, and not in ripe fruit of the Nr mutant. The accumulation of LeARF1 in ripe fruit was restored by 1-methylcyclopropene (1-MCP), an inhibitor of ethylene action, while 1-MCP had no effect on the expression of LeXYL1 or LeXYL2. This suggests that LeARF1 expression is subject to negative regulation by ethylene and that the two beta-d-xylosidase genes are independent of ethylene action.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , Glicósido Hidrolasas/genética , Solanum lycopersicum/genética , Xilosidasas/genética , Clonación Molecular , Regulación del Desarrollo de la Expresión Génica/genética , Regulación Enzimológica de la Expresión Génica/genética , Glicósido Hidrolasas/aislamiento & purificación , Glicósido Hidrolasas/metabolismo , Solanum lycopersicum/enzimología , Solanum lycopersicum/crecimiento & desarrollo , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Xilosidasas/aislamiento & purificación , Xilosidasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...