RESUMEN
The aim of this study was to investigate the role of immunoglobulin E (IgE) in the late phase reaction (LPR) of murine experimental asthma. Our model consisted of an implant of DNP-conjugated, heat-coagulated hen's egg white (DNP-EWI), followed 14 days later by an intratracheal challenge with aggregated DNP-ovalbumin. Airway inflammation was analyzed 48 h after challenge and compared with a similarly immunized group of mice with highly suppressed humoral response due to anti-ì and anti-ä antibody treatment. Total number of cells in the bronchoalveolar lavage (BAL) (with predominance of eosinophils) and EPO activity in the lung homogenate were increased in the DNP-EWI-immunized group compared with immunosuppressed or nonimmunized mice. However, the cellular infiltration and EPO activity observed in the immunosuppressed group were still significantly above those obtained in the nonimmunized group, indicating that inhibition of antibody production did not completely prevent the inflammatory manifestations in BAL and lung. Airway hyperresponsiveness to methacoline was obtained in DNP-EWI-immunized mice, but the respiratory mechanical parameters returned to normal levels in the immunosuppressed group. When these mice were reconstituted with monoclonal anti-DNP antibodies, only IgE, but not IgG1, restored lung inflammation and decreased the conductance of the respiratory system, therefore, increasing hyperresponsiveness. These results indicate that antibodies are not essential for induction of LPR in the lung. However, IgE enhances pulmonary inflammation and hyperresponsiveness.