Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Protein Sci ; 33(4): e4949, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38511500

RESUMEN

Primary defects in folding of mutant proinsulin can cause dominant-negative proinsulin accumulation in the endoplasmic reticulum (ER), impaired anterograde proinsulin trafficking, perturbed ER homeostasis, diminished insulin production, and ß-cell dysfunction. Conversely, if primary impairment of ER-to-Golgi trafficking (which also perturbs ER homeostasis) drives misfolding of nonmutant proinsulin-this might suggest bi-directional entry into a common pathological phenotype (proinsulin misfolding, perturbed ER homeostasis, and deficient ER export of proinsulin) that can culminate in diminished insulin storage and diabetes. Here, we've challenged ß-cells with conditions that impair ER-to-Golgi trafficking, and devised an accurate means to assess the relative abundance of distinct folded/misfolded forms of proinsulin using a novel nonreducing SDS-PAGE/immunoblotting protocol. We confirm abundant proinsulin misfolding upon introduction of a diabetogenic INS mutation, or in the islets of db/db mice. Whereas blockade of proinsulin trafficking in Golgi/post-Golgi compartments results in intracellular accumulation of properly-folded proinsulin (bearing native disulfide bonds), impairment of ER-to-Golgi trafficking (regardless whether such impairment is achieved by genetic or pharmacologic means) results in decreased native proinsulin with more misfolded proinsulin. Remarkably, reversible ER-to-Golgi transport defects (such as treatment with brefeldin A or cellular energy depletion) upon reversal quickly restore the ER folding environment, resulting in the disappearance of pre-existing misfolded proinsulin while preserving proinsulin bearing native disulfide bonds. Thus, proper homeostatic balance of ER-to-Golgi trafficking is linked to a more favorable proinsulin folding (as well as trafficking) outcome.


Asunto(s)
Diabetes Mellitus , Células Secretoras de Insulina , Ratones , Animales , Proinsulina/genética , Proinsulina/química , Pliegue de Proteína , Insulina/química , Retículo Endoplásmico , Homeostasis , Disulfuros/química
2.
J Clin Endocrinol Metab ; 107(11): 3100-3110, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36017587

RESUMEN

CONTEXT: Aberrant biosynthesis and secretion of the insulin precursor proinsulin occurs in both type I and type II diabetes. Inflammatory cytokines are implicated in pancreatic islet stress and dysfunction in both forms of diabetes, but the mechanisms remain unclear. OBJECTIVE: We sought to determine the effect of the diabetes-associated cytokines on proinsulin folding, trafficking, secretion, and ß-cell function. METHODS: Human islets were treated with interleukin-1ß and interferon-γ for 48 hours, followed by analysis of interleukin-6, nitrite, proinsulin and insulin release, RNA sequencing, and unbiased profiling of the proinsulin interactome by affinity purification-mass spectrometry. RESULTS: Cytokine treatment induced secretion of interleukin-6, nitrites, and insulin, as well as aberrant release of proinsulin. RNA sequencing showed that cytokines upregulated genes involved in endoplasmic reticulum stress, and, consistent with this, affinity purification-mass spectrometry revealed cytokine induced proinsulin binding to multiple endoplasmic reticulum chaperones and oxidoreductases. Moreover, increased binding to the chaperone immunoglobulin binding protein was required to maintain proper proinsulin folding in the inflammatory environment. Cytokines also regulated novel interactions between proinsulin and type 1 and type 2 diabetes genome-wide association studies candidate proteins not previously known to interact with proinsulin (eg, Ataxin-2). Finally, cytokines induced proinsulin interactions with a cluster of microtubule motor proteins and chemical destabilization of microtubules with Nocodazole exacerbated cytokine induced proinsulin secretion. CONCLUSION: Together, the data shed new light on mechanisms by which diabetes-associated cytokines dysregulate ß-cell function. For the first time, we show that even short-term exposure to an inflammatory environment reshapes proinsulin interactions with critical chaperones and regulators of the secretory pathway.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Islotes Pancreáticos , Humanos , Proinsulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Citocinas/metabolismo , Interleucina-6/metabolismo , Estudio de Asociación del Genoma Completo , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Células Secretoras de Insulina/metabolismo
3.
Cancers (Basel) ; 14(12)2022 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-35740568

RESUMEN

The E2A and inhibitor of DNA binding (ID) proteins are transcription factors involved in cell cycle regulation and cellular differentiation. Imbalance of ID/E2A activity is associated with oncogenesis in various tumors, but their expression patterns and prognostic values are still unknown. We evaluated ID and E2A expression in ovarian cancer cells, and assessed the possibility of reprogramming ovarian cellular homeostasis by restoring the ID/E2A axis. We analyzed copy number alterations, mutations, methylations, and mRNA expressions of ID 1-4 and E2A using The Cancer Genome Atlas data of 570 ovarian serous cystadenocarcinoma patients. Incidentally, 97.2% cases exhibited gain of ID 1-4 or loss of E2A. Predominantly, ID 1-4 were hypomethylated, while E2A was hypermethylated. Immunohistochemical analysis revealed that ID-3 and ID-4 expressions were high while E2A expression was low in cancerous ovarian tissues. Correlation analysis of ID and E2A levels with survival outcomes of ovarian cancer patients indicated that patients with high ID-3 levels had poor overall survival. We also determined the effect of E2A induction on ovarian cancer cell growth in vitro and in vivo using SKOV-3/Luc cells transduced with tamoxifen-inducible E47, a splice variant of E2A. Interestingly, E47 induced SKOV-3 cell death in vitro and inhibited tumor growth in SKOV-3 implanted mice. Therefore, restoring ID/E2A balance is a promising approach for treating ovarian cancer.

4.
J Clin Invest ; 131(2)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33463547

RESUMEN

Both basal and glucose-stimulated insulin release occur primarily by insulin secretory granule exocytosis from pancreatic ß cells, and both are needed to maintain normoglycemia. Loss of insulin-secreting ß cells, accompanied by abnormal glucose tolerance, may involve simple exhaustion of insulin reserves (which, by immunostaining, appears as a loss of ß cell identity), or ß cell dedifferentiation, or ß cell death. While various sensing and signaling defects can result in diminished insulin secretion, somewhat less attention has been paid to diabetes risk caused by insufficiency in the biosynthetic generation and maintenance of the total insulin granule storage pool. This Review offers an overview of insulin biosynthesis, beginning with the preproinsulin mRNA (translation and translocation into the ER), proinsulin folding and export from the ER, and delivery via the Golgi complex to secretory granules for conversion to insulin and ultimate hormone storage. All of these steps are needed for generation and maintenance of the total insulin granule pool, and defects in any of these steps may, weakly or strongly, perturb glycemic control. The foregoing considerations have obvious potential relevance to the pathogenesis of type 2 diabetes and some forms of monogenic diabetes; conceivably, several of these concepts might also have implications for ß cell failure in type 1 diabetes.


Asunto(s)
Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Insulina/biosíntesis , Pliegue de Proteína , Precursores de Proteínas/biosíntesis , Transducción de Señal , Animales , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Retículo Endoplásmico/patología , Aparato de Golgi/patología , Humanos , Células Secretoras de Insulina/patología , Transporte de Proteínas
5.
Diabetes ; 69(8): 1723-1734, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32457219

RESUMEN

The ß-cell protein synthetic machinery is dedicated to the production of mature insulin, which requires the proper folding and trafficking of its precursor, proinsulin. The complete network of proteins that mediate proinsulin folding and advancement through the secretory pathway, however, remains poorly defined. Here we used affinity purification and mass spectrometry to identify, for the first time, the proinsulin biosynthetic interaction network in human islets. Stringent analysis established a central node of proinsulin interactions with endoplasmic reticulum (ER) folding factors, including chaperones and oxidoreductases, that is remarkably conserved in both sexes and across three ethnicities. The ER-localized peroxiredoxin PRDX4 was identified as a prominent proinsulin-interacting protein. In ß-cells, gene silencing of PRDX4 rendered proinsulin susceptible to misfolding, particularly in response to oxidative stress, while exogenous PRDX4 improved proinsulin folding. Moreover, proinsulin misfolding induced by oxidative stress or high glucose was accompanied by sulfonylation of PRDX4, a modification known to inactivate peroxiredoxins. Notably, islets from patients with type 2 diabetes (T2D) exhibited significantly higher levels of sulfonylated PRDX4 than islets from healthy individuals. In conclusion, we have generated the first reference map of the human proinsulin interactome to identify critical factors controlling insulin biosynthesis, ß-cell function, and T2D.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Peroxirredoxinas/metabolismo , Proinsulina/química , Proinsulina/metabolismo , Western Blotting , Diabetes Mellitus Tipo 2/genética , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Femenino , Humanos , Inmunoprecipitación , Insulina/química , Masculino , Peroxirredoxinas/genética , Unión Proteica , Pliegue de Proteína , Espectrometría de Masas en Tándem
6.
Diabetes ; 69(5): 954-964, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32139596

RESUMEN

Abnormal interactions between misfolded mutant and wild-type (WT) proinsulin (PI) in the endoplasmic reticulum (ER) drive the molecular pathogenesis of mutant INS gene-induced diabetes of youth (MIDY). How these abnormal interactions are initiated remains unknown. Normally, PI-WT dimerizes in the ER. Here, we suggest that the normal PI-PI contact surface, involving the B-chain, contributes to dominant-negative effects of misfolded MIDY mutants. Specifically, we find that PI B-chain tyrosine-16 (Tyr-B16), which is a key residue in normal PI dimerization, helps confer dominant-negative behavior of MIDY mutant PI-C(A7)Y. Substitutions of Tyr-B16 with either Ala, Asp, or Pro in PI-C(A7)Y decrease the abnormal interactions between the MIDY mutant and PI-WT, rescuing PI-WT export, limiting ER stress, and increasing insulin production in ß-cells and human islets. This study reveals the first evidence indicating that noncovalent PI-PI contact initiates dominant-negative behavior of misfolded PI, pointing to a novel therapeutic target to enhance PI-WT export and increase insulin production.


Asunto(s)
Insulina/síntesis química , Insulina/metabolismo , Proinsulina/química , Proinsulina/metabolismo , Animales , Línea Celular , Humanos , Insulina/química , Insulina/genética , Islotes Pancreáticos , Ratones , Modelos Moleculares , Mutación , Proinsulina/genética , Conformación Proteica
7.
Elife ; 82019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31184302

RESUMEN

Biosynthesis of insulin - critical to metabolic homeostasis - begins with folding of the proinsulin precursor, including formation of three evolutionarily conserved intramolecular disulfide bonds. Remarkably, normal pancreatic islets contain a subset of proinsulin molecules bearing at least one free cysteine thiol. In human (or rodent) islets with a perturbed endoplasmic reticulum folding environment, non-native proinsulin enters intermolecular disulfide-linked complexes. In genetically obese mice with otherwise wild-type islets, disulfide-linked complexes of proinsulin are more abundant, and leptin receptor-deficient mice, the further increase of such complexes tracks with the onset of islet insulin deficiency and diabetes. Proinsulin-Cys(B19) and Cys(A20) are necessary and sufficient for the formation of proinsulin disulfide-linked complexes; indeed, proinsulin Cys(B19)-Cys(B19) covalent homodimers resist reductive dissociation, highlighting a structural basis for aberrant proinsulin complex formation. We conclude that increased proinsulin misfolding via disulfide-linked complexes is an early event associated with prediabetes that worsens with ß-cell dysfunction in type two diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Proinsulina/química , Pliegue de Proteína , Animales , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Progresión de la Enfermedad , Disulfuros/química , Disulfuros/metabolismo , Retículo Endoplásmico/metabolismo , Chaperón BiP del Retículo Endoplásmico , Humanos , Islotes Pancreáticos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Proinsulina/genética , Proinsulina/metabolismo , Receptores de Leptina/deficiencia , Receptores de Leptina/genética
8.
Elife ; 82019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31184304

RESUMEN

Regulated proinsulin biosynthesis, disulfide bond formation and ER redox homeostasis are essential to prevent Type two diabetes. In ß cells, protein disulfide isomerase A1 (PDIA1/P4HB), the most abundant ER oxidoreductase of over 17 members, can interact with proinsulin to influence disulfide maturation. Here we find Pdia1 is required for optimal insulin production under metabolic stress in vivo. ß cell-specific Pdia1 deletion in young high-fat diet fed mice or aged mice exacerbated glucose intolerance with inadequate insulinemia and increased the proinsulin/insulin ratio in both serum and islets compared to wildtype mice. Ultrastructural abnormalities in Pdia1-null ß cells include diminished insulin granule content, ER vesiculation and distention, mitochondrial swelling and nuclear condensation. Furthermore, Pdia1 deletion increased accumulation of disulfide-linked high molecular weight proinsulin complexes and islet vulnerability to oxidative stress. These findings demonstrate that PDIA1 contributes to oxidative maturation of proinsulin in the ER to support insulin production and ß cell health.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Obesidad/metabolismo , Procolágeno-Prolina Dioxigenasa/metabolismo , Proinsulina/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Animales , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa/efectos adversos , Disulfuros/metabolismo , Retículo Endoplásmico/metabolismo , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Ratones Noqueados , Ratones Transgénicos , Dilatación Mitocondrial , Obesidad/etiología , Obesidad/genética , Estrés Oxidativo , Procolágeno-Prolina Dioxigenasa/genética , Proteína Disulfuro Isomerasas/genética
9.
Cell Mol Gastroenterol Hepatol ; 6(2): 181-198, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30003124

RESUMEN

BACKGROUND & AIMS: Oncogenic mutations in KRAS, coupled with inactivation of p53, CDKN2A/p16INK4A, and SMAD4, drive progression of pancreatic ductal adenocarcinoma (PDA). Overexpression of MYC and deregulation of retinoblastoma (RB) further promote cell proliferation and make identifying a means to therapeutically alter cell-cycle control pathways in PDA a significant challenge. We previously showed that the basic helix-loop-helix transcription factor E47 induced stable growth arrest in PDA cells in vitro and in vivo. Here, we identified molecular mechanisms that underlie E47-induced growth arrest in low-passage, patient-derived primary and established PDA cell lines. METHODS: RNA sequencing was used to profile E47-dependent transcriptomes in 5 PDA cell lines. Gene Ontology analysis identified cell-cycle control as the most altered pathway. Small interfering RNA/short hairpin RNA knockdown, small-molecule inhibitors, and viral expression were used to examine the function of E47-dependent genes in cell-cycle arrest. Cell morphology, expression of molecular markers, and senescence-associated ß-galactosidase activity assays identified cellular senescence. RESULTS: E47 uniformly inhibited PDA cell-cycle progression by decreasing expression of MYC, increasing the level of CDKN1B/p27KIP1, and restoring RB tumor-suppressor function. The molecular mechanisms by which E47 elicited these changes included altering both RNA transcript levels and protein stability of MYC and CDKN1B/p27KIP1. At the cellular level, E47 elicited a senescence-like phenotype characterized by increased senescence-associated ß-galactosidase activity and altered expression of senescence markers. CONCLUSIONS: E47 governs a highly conserved network of cell-cycle control genes, including MYC, CDKN1B/p27KIP1, and RB, which can induce a senescence-like program in PDA cells that lack CDKN2A/p16INK4A and wild-type p53. RNA sequencing data are available at the National Center for Biotechnology Information GEO at https://www.ncbi.nlm.nih.gov/geo/; accession number: GSE100327.

10.
Mol Oncol ; 12(7): 1104-1124, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29719936

RESUMEN

Pancreatic acinar cells synthesize, package, and secrete digestive enzymes into the duodenum to aid in nutrient absorption and meet metabolic demands. When exposed to cellular stresses and insults, acinar cells undergo a dedifferentiation process termed acinar-ductal metaplasia (ADM). ADM lesions with oncogenic mutations eventually give rise to pancreatic ductal adenocarcinoma (PDAC). In healthy pancreata, the basic helix-loop-helix (bHLH) factors MIST1 and PTF1a coordinate an acinar-specific transcription network that maintains the highly developed differentiation status of the cells, protecting the pancreas from undergoing a transformative process. However, when MIST1 and PTF1a gene expression is silenced, cells are more prone to progress to PDAC. In this study, we tested whether induced MIST1 or PTF1a expression in PDAC cells could (i) re-establish the transcriptional program of differentiated acinar cells and (ii) simultaneously reduce tumor cell properties. As predicted, PTF1a induced gene expression of digestive enzymes and acinar-specific transcription factors, while MIST1 induced gene expression of vesicle trafficking molecules as well as activation of unfolded protein response components, all of which are essential to handle the high protein production load that is characteristic of acinar cells. Importantly, induction of PTF1a in PDAC also influenced cancer-associated properties, leading to a decrease in cell proliferation, cancer stem cell numbers, and repression of key ATP-binding cassette efflux transporters resulting in heightened sensitivity to gemcitabine. Thus, activation of pancreatic bHLH transcription factors rescues the acinar gene program and decreases tumorigenic properties in pancreatic cancer cells, offering unique opportunities to develop novel therapeutic intervention strategies for this deadly disease.


Asunto(s)
Células Acinares/patología , Adenocarcinoma/genética , Carcinogénesis/genética , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Desoxicitidina/análogos & derivados , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción/metabolismo , Células Acinares/metabolismo , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/patología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Carcinogénesis/patología , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Desoxicitidina/uso terapéutico , Redes Reguladoras de Genes , Silenciador del Gen , Sitios Genéticos , Ratones , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Ratas , Gemcitabina
11.
Oncotarget ; 8(32): 53154-53167, 2017 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-28881801

RESUMEN

The average survival for patients with Pancreatic Ductal Adenocarcinoma (PDA) is merely 6 months, underscoring the need for new therapeutic approaches. During PDA progression, pancreatic acinar cells lose activity of the ClassI/II bHLH factors that regulate quiescence. We previously found that promoting transcriptional activity of the Class I bHLH factor E47 in highly aggressive PDA cells induced stable growth arrest in vitro and in vivo. To translate these findings for clinical utility, we developed a high throughput screening platform to identify small molecule inducers of Class I/II bHLH activity. A screen of 4,375 known drugs identified 70 bHLH activators. Prominent among the hits were members of the statin class of HMG-CoA reductase inhibitors, cholesterol lowering drugs that are also being evaluated in cancer. Studies with pitavastatin in primary patient derived tumor cells and established PDA lines, revealed dose dependent growth inhibition. At the molecular level, pitavastatin induced expression of the cyclin dependent kinase (CDK) inhibitor p21 in a cholesterol independent manner, blocked repressive phosphorylation of the Retinoblastoma tumor suppressor protein at CDK targeted sites, and reduced expression of E2F target genes required for progression through the G1/S boundary. Together, the data provide new insight into mechanisms by which statins constrain proliferation in cancer and establish the effectiveness of a novel screening platform to identify small molecules of clinical relevance in pancreatic cancer.

12.
Dev Cell ; 36(1): 4-6, 2016 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-26766438

RESUMEN

Pancreatic ß cells synthesize and secrete insulin to increase anabolic metabolism in an organism, and insulin synthesis has long been suspected to inhibit ß cell replication. Recently in Cell Metabolism, Szabat et al. (2015) present evidence that deletion of Insulin genes alleviates ER stress and promotes mature ß cell replication.


Asunto(s)
Retículo Endoplásmico/metabolismo , Células Secretoras de Insulina/metabolismo , Apoptosis/genética , Diferenciación Celular , Proliferación Celular , Estrés del Retículo Endoplásmico , Insulina/metabolismo
13.
PLoS Biol ; 13(10): e1002277, 2015 10.
Artículo en Inglés | MEDLINE | ID: mdl-26469762

RESUMEN

Although glucose uniquely stimulates proinsulin biosynthesis in ß cells, surprisingly little is known of the underlying mechanism(s). Here, we demonstrate that glucose activates the unfolded protein response transducer inositol-requiring enzyme 1 alpha (IRE1α) to initiate X-box-binding protein 1 (Xbp1) mRNA splicing in adult primary ß cells. Using mRNA sequencing (mRNA-Seq), we show that unconventional Xbp1 mRNA splicing is required to increase and decrease the expression of several hundred mRNAs encoding functions that expand the protein secretory capacity for increased insulin production and protect from oxidative damage, respectively. At 2 wk after tamoxifen-mediated Ire1α deletion, mice develop hyperglycemia and hypoinsulinemia, due to defective ß cell function that was exacerbated upon feeding and glucose stimulation. Although previous reports suggest IRE1α degrades insulin mRNAs, Ire1α deletion did not alter insulin mRNA expression either in the presence or absence of glucose stimulation. Instead, ß cell failure upon Ire1α deletion was primarily due to reduced proinsulin mRNA translation primarily because of defective glucose-stimulated induction of a dozen genes required for the signal recognition particle (SRP), SRP receptors, the translocon, the signal peptidase complex, and over 100 other genes with many other intracellular functions. In contrast, Ire1α deletion in ß cells increased the expression of over 300 mRNAs encoding functions that cause inflammation and oxidative stress, yet only a few of these accumulated during high glucose. Antioxidant treatment significantly reduced glucose intolerance and markers of inflammation and oxidative stress in mice with ß cell-specific Ire1α deletion. The results demonstrate that glucose activates IRE1α-mediated Xbp1 splicing to expand the secretory capacity of the ß cell for increased proinsulin synthesis and to limit oxidative stress that leads to ß cell failure.


Asunto(s)
Empalme Alternativo , Proteínas de Unión al ADN/metabolismo , Endorribonucleasas/metabolismo , Hiperglucemia/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Estrés Oxidativo , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción/metabolismo , Adolescente , Adulto , Animales , Células Cultivadas , Cruzamientos Genéticos , Proteínas de Unión al ADN/genética , Endorribonucleasas/genética , Femenino , Humanos , Hiperglucemia/sangre , Hiperglucemia/patología , Secreción de Insulina , Células Secretoras de Insulina/patología , Células Secretoras de Insulina/ultraestructura , Masculino , Ratones Noqueados , Ratones Transgénicos , Persona de Mediana Edad , Proteínas Serina-Treonina Quinasas/genética , Proteínas Recombinantes/metabolismo , Factores de Transcripción del Factor Regulador X , Transducción de Señal , Donantes de Tejidos , Factores de Transcripción/genética , Proteína 1 de Unión a la X-Box , Adulto Joven
14.
Pancreas ; 44(5): 718-27, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25894862

RESUMEN

OBJECTIVES: Pancreatic ductal adenocarcinoma (PDA) initiates from quiescent acinar cells that attain a Kras mutation, lose signaling from basic helix-loop-helix (bHLH) transcription factors, undergo acinar-ductal metaplasia, and rapidly acquire increased growth potential. We queried whether PDA cells can be reprogrammed to revert to their original quiescent acinar cell state by shifting key transcription programs. METHODS: Human PDA cell lines were engineered to express an inducible form of the bHLH protein E47. Gene expression, growth, and functional studies were investigated using microarray, quantitative polymerase chain reaction, immunoblots, immunohistochemistry, small interfering RNA, chromatin immunoprecipitation analyses, and cell transplantation into mice. RESULTS: In human PDA cells, E47 activity triggers stable G0/G1 arrest, which requires the cyclin-dependent kinase inhibitor p21 and the stress response protein TP53INP1. Concurrently, E47 induces high level expression of acinar digestive enzymes and feed forward activation of the acinar maturation network regulated by the bHLH factor MIST1. Moreover, induction of E47 in human PDA cells in vitro is sufficient to inhibit tumorigenesis. CONCLUSIONS: Human PDA cells retain a high degree of plasticity, which can be exploited to induce a quiescent acinar cell state with reduced tumorigenic potential. Moreover, bHLH activity is a critical node coordinately regulating human PDA cell growth versus cell fate.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Reprogramación Celular , Senescencia Celular , Neoplasias Pancreáticas/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/prevención & control , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Terapia Genética , Humanos , Ratones SCID , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/prevención & control , Fenotipo , Interferencia de ARN , Factores de Tiempo , Transfección , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Cryobiology ; 70(3): 283-6, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25817378

RESUMEN

We have previously shown that human embryonic stem cell derived islet progenitors (hESC-IPs), encapsulated inside an immunoprotective device, mature in vivo and ameliorate diabetes in mice. The ability to cryopreserve hESC-IPs preloaded in these devices would enhance consistency and portability, but traditional 'slow freezing' methods did not work well for cells encapsulated in the device. Vitrification is an attractive alternative cryopreservation approach. To assess the tolerance of hESC-IPs to vitrification relevant conditions, we here are reporting cell survival following excursions in tonicity, exposure to fifteen 40% v/v combinations of 4 cryoprotectants, and varied methods for addition and elution. We find that 78% survival is achieved using a protocol in which cells are abruptly (in one step) exposed to a solution containing 10% v/v each dimethyl sulfoxide, propylene glycol, ethylene glycol, and glycerol on ice, and eluted step-wise with DPBS+0.5M sucrose at 37°C. Importantly, the hESC-IPs also maintain expression of the critical islet progenitor markers PDX-1, NKX6.1, NGN3 and NEURO-D1. Thus, hESC-IPs exhibit robust tolerance to exposure to vitrification solutions in relevant conditions.


Asunto(s)
Criopreservación/métodos , Crioprotectores/farmacología , Células Madre Embrionarias Humanas/citología , Islotes Pancreáticos/embriología , Vitrificación , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Supervivencia Celular , Dimetilsulfóxido/farmacología , Glicol de Etileno/farmacología , Congelación , Glicerol/farmacología , Proteínas de Homeodominio/genética , Humanos , Islotes Pancreáticos/citología , Proteínas del Tejido Nervioso/genética , Propilenglicol/farmacología , Soluciones , Sacarosa/farmacología , Transactivadores/genética , Factores de Transcripción/genética
16.
Stem Cell Res ; 12(3): 807-14, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24788136

RESUMEN

There are several challenges to successful implementation of a cell therapy for insulin dependent diabetes derived from human embryonic stem cells (hESC). Among these are development of functional insulin producing cells, a clinical delivery method that eliminates the need for chronic immunosuppression, and assurance that hESC derived tumors do not form in the patient. We and others have shown that encapsulation of cells in a bilaminar device (TheraCyte) provides immunoprotection in rodents and primates. Here we monitored human insulin secretion and employed bioluminescent imaging (BLI) to evaluate the maturation, growth, and containment of encapsulated islet progenitors derived from CyT49 hESC, transplanted into mice. Human insulin was detectable by 7 weeks post-transplant and increased 17-fold over the course of 8 weeks, yet during this period the biomass of encapsulated cells remained constant. Remarkably, by 20 weeks post-transplant encapsulated cells secreted sufficient levels of human insulin to ameliorate alloxan induced diabetes. Further, bioluminescent imaging revealed for the first time that hESCs remained fully contained in encapsulation devices for up to 150 days, the longest period tested. Collectively, the data suggest that encapsulated hESC derived islet progenitors hold great promise as an effective and safe cell replacement therapy for insulin dependent diabetes.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Proliferación Celular , Diabetes Mellitus/terapia , Células Madre Embrionarias/citología , Islotes Pancreáticos/crecimiento & desarrollo , Animales , Técnicas de Cultivo de Célula/instrumentación , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatología , Células Madre Embrionarias/química , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/trasplante , Humanos , Insulina/metabolismo , Secreción de Insulina , Islotes Pancreáticos/química , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Trasplante de Islotes Pancreáticos , Ratones , Coloración y Etiquetado
17.
Cell Rep ; 4(5): 921-30, 2013 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-24012759

RESUMEN

Insulin homeostasis in pancreatic ß cells is now recognized as a critical element in the progression of obesity and type II diabetes (T2D). Proteins that interact with insulin to direct its sequential synthesis, folding, trafficking, and packaging into reserve granules in order to manage release in response to elevated glucose remain largely unknown. Using a conformation-based approach combined with mass spectrometry, we have generated the insulin biosynthetic interaction network (insulin BIN), a proteomic roadmap in the ß cell that describes the sequential interacting partners of insulin along the secretory axis. The insulin BIN revealed an abundant C2 domain-containing transmembrane protein 24 (TMEM24) that manages glucose-stimulated insulin secretion from a reserve pool of granules, a critical event impaired in patients with T2D. The identification of TMEM24 in the context of a comprehensive set of sequential insulin-binding partners provides a molecular description of the insulin secretory pathway in ß cells.


Asunto(s)
Insulina/biosíntesis , Proteínas de la Membrana/metabolismo , Secuencia de Aminoácidos , Animales , Transporte Biológico , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Insulina/metabolismo , Secreción de Insulina , Islotes Pancreáticos/metabolismo , Ratones , Datos de Secuencia Molecular , Obesidad/metabolismo , Transducción de Señal , Fracciones Subcelulares/metabolismo
18.
Cryo Letters ; 33(6): 518-31, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23250411

RESUMEN

Encapsulating insulin producing cells (INPCs) in an immunoisolation device have been shown to cure diabetes in rodents without the need for immunosuppression. However, micro-encapsulation in semi-solid gels raises longevity and safety concerns for future use of stem cell derived INPCs. We have focused on a durable and retrievable macro-encapsulation (> 10(6) cells) device (TheraCyte). Cryopreservation (CP) of cells preloaded into the device is highly desirable but may require prolonged exposure to cryoprotectants during loading and post-thaw manipulations. Here, we are reporting survival and function of a human islet cell line frozen as single cells or as islet-like cell clusters. The non-clusterized cells exhibited high cryosurvival after prolonged pre-freeze or post-thaw exposure to 10 percent DMSO. However, both clusterization and especially loading INPCs into the device reduced viable yield even without CP. The survived cryopreserved macro-encapsulated INPCs remained fully functional suggesting that CP of macro-encapsulated cells is a promising tool for cell based therapies.


Asunto(s)
Criopreservación/métodos , Islotes Pancreáticos/citología , Supervivencia Celular , Células Inmovilizadas/citología , Células Inmovilizadas/efectos de los fármacos , Células Inmovilizadas/metabolismo , Dimetilsulfóxido/metabolismo , Dimetilsulfóxido/toxicidad , Humanos , Insulina/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo
19.
Chem Biol ; 19(7): 806-18, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22840769

RESUMEN

Hepatocyte nuclear factor (HNF)4α is a central regulator of gene expression in cell types that play a critical role in metabolic homeostasis, including hepatocytes, enterocytes, and pancreatic ß cells. Although fatty acids were found to occupy the HNF4α ligand-binding pocket and were proposed to act as ligands, there is controversy about both the nature of HNF4α ligands as well as the physiological role of the binding. Here, we report the discovery of potent synthetic HNF4α antagonists through a high-throughput screen for effectors of the human insulin promoter. These molecules bound to HNF4α with high affinity and modulated the expression of known HNF4α target genes. Notably, they were found to be selectively cytotoxic to cancer cell lines in vitro and in vivo, although in vivo potency was limited by suboptimal pharmacokinetic properties. The discovery of bioactive modulators for HNF4α raises the possibility that diseases involving HNF4α, such as diabetes and cancer, might be amenable to pharmacologic intervention by modulation of HNF4α activity.


Asunto(s)
Bencimidazoles/farmacología , Descubrimiento de Drogas , Factor Nuclear 4 del Hepatocito/antagonistas & inhibidores , Ensayos Analíticos de Alto Rendimiento , Insulina/genética , Regiones Promotoras Genéticas/genética , Sulfonamidas/farmacología , Bencimidazoles/química , Relación Dosis-Respuesta a Droga , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Humanos , Modelos Moleculares , Estructura Molecular , PPAR gamma/agonistas , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Relación Estructura-Actividad , Sulfonamidas/química
20.
Islets ; 3(6): 358-66, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21964314

RESUMEN

Elucidating mechanisms of cell cycle control in normally quiescent human pancreatic ß-cells has the potential to impact regeneration strategies for diabetes. Previously we demonstrated that Id3, a repressor of basic Helix-Loop-Helix (bHLH) proteins, was sufficient to induce cell cycle entry in pancreatic duct cells, which are closely related to ß-cells developmentally. We hypothesized that Id3 might similarly induce cell cycle entry in primary human ß-cells. To test this directly, adult human ß-cells were transduced with adenovirus expressing Id3. Consistent with a replicative response, ß-cells exhibited BrdU incorporation. Further, Id3 potently repressed expression of the cyclin dependent kinase inhibitor p57 (Kip2 ) , a gene which is also silenced in a rare ß-cell hyperproliferative disorder in infants. Surprisingly however, BrdU positive ß-cells did not express the proliferation markers Ki67 and pHH3. Instead, BrdU uptake reflected a DNA damage response, as manifested by hydroxyurea incorporation, γH2AX expression, and 53BP1 subcellular relocalization. The uncoupling of BrdU uptake from replication raises a cautionary note about interpreting studies relying solely upon BrdU incorporation as evidence of ß-cell proliferation. The data also establish that loss of p57 (Kip2) is not sufficient to induce cell cycle entry in adult ß-cells. Moreover, the differential responses to Id3 between duct and ß-cells reveal that ß-cells possess intrinsic resistance to cell cycle entry not common to all quiescent epithelial cells in the adult human pancreas. The data provide a much needed comparative model for investigating the molecular basis for this resistance in order to develop a strategy for improving replication competence in ß-cells.


Asunto(s)
Bromodesoxiuridina/metabolismo , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/biosíntesis , Daño del ADN , Proteínas Inhibidoras de la Diferenciación/metabolismo , Células Secretoras de Insulina/metabolismo , Animales , Ciclo Celular/genética , Ciclo Celular/fisiología , Procesos de Crecimiento Celular/genética , Procesos de Crecimiento Celular/fisiología , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/antagonistas & inhibidores , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/genética , Regulación de la Expresión Génica , Histonas/metabolismo , Humanos , Inmunohistoquímica , Proteínas Inhibidoras de la Diferenciación/genética , Células Secretoras de Insulina/citología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Antígeno Ki-67/metabolismo , Masculino , Ratones , Ratones Endogámicos ICR , Transfección , Proteína 1 de Unión al Supresor Tumoral P53 , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...