Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 5(1): 313, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35383287

RESUMEN

The global dietary supplement market is valued at over USD 100 billion. One popular dietary supplement, S-adenosylmethionine, is marketed to improve joints, liver health and emotional well-being in the US since 1999, and has been a prescription drug in Europe to treat depression and arthritis since 1975, but recent studies questioned its efficacy. In our body, S-adenosylmethionine is critical for the methylation of nucleic acids, proteins and many other targets. The marketing of SAM implies that more S-adenosylmethionine is better since it would stimulate methylations and improve health. Previously, we have shown that methylation reactions regulate biological rhythms in many organisms. Here, using biological rhythms to assess the effects of exogenous S-adenosylmethionine, we reveal that excess S-adenosylmethionine disrupts rhythms and, rather than promoting methylation, is catabolized to adenine and methylthioadenosine, toxic methylation inhibitors. These findings further our understanding of methyl metabolism and question the safety of S-adenosylmethionine as a supplement.


Asunto(s)
Adenina , S-Adenosilmetionina , Suplementos Dietéticos , Hígado/metabolismo , Metilación , S-Adenosilmetionina/metabolismo , S-Adenosilmetionina/farmacología
2.
Sci Adv ; 6(51)2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33328229

RESUMEN

Circadian gene expression driven by transcription activators CLOCK and BMAL1 is intimately associated with dynamic chromatin remodeling. However, how cellular metabolism directs circadian chromatin remodeling is virtually unexplored. We report that the S-adenosylhomocysteine (SAH) hydrolyzing enzyme adenosylhomocysteinase (AHCY) cyclically associates to CLOCK-BMAL1 at chromatin sites and promotes circadian transcriptional activity. SAH is a potent feedback inhibitor of S-adenosylmethionine (SAM)-dependent methyltransferases, and timely hydrolysis of SAH by AHCY is critical to sustain methylation reactions. We show that AHCY is essential for cyclic H3K4 trimethylation, genome-wide recruitment of BMAL1 to chromatin, and subsequent circadian transcription. Depletion or targeted pharmacological inhibition of AHCY in mammalian cells markedly decreases the amplitude of circadian gene expression. In mice, pharmacological inhibition of AHCY in the hypothalamus alters circadian locomotor activity and rhythmic transcription within the suprachiasmatic nucleus. These results reveal a previously unappreciated connection between cellular metabolism, chromatin dynamics, and circadian regulation.


Asunto(s)
Adenosilhomocisteinasa , Ensamble y Desensamble de Cromatina , Relojes Circadianos , Metionina , Factores de Transcripción ARNTL/genética , Adenosilhomocisteinasa/genética , Adenosilhomocisteinasa/metabolismo , Animales , Proteínas CLOCK , Cromatina , Ritmo Circadiano/genética , Metionina/metabolismo , Ratones , S-Adenosilhomocisteína/metabolismo
3.
Biomed Res ; 39(2): 57-63, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29669984

RESUMEN

Micturition behavior follows regular day/night fluctuations, and unwanted increase in micturition could occur during night in jet lag condition. To clarify the effect of jet lag on micturition behavior, we simultaneously detected circadian micturition patterns and locomotor activity rhythms of mice under experimental jet lag conditions, by applying the improved automated Voided Stain on Paper (aVSOP) method. When wild-type (WT) mice were phase-advanced for 8 hours, day-night variation of micturition was disrupted suddenly, and this irregular daily micturition continued until 8 days, although their activity rhythms entrained gradually day by day until 8 days. We also examined how jet lag induced changes of micturition in Per-null mice lacking Per1, Per2 and Per3 genes, whose endogenous clock is completely disrupted. We found both micturition and locomotor activity of Per-null mice promptly entrained to the new LD cycle. These findings suggest that the irregular micturition during jet lag is caused along with the gradual shift of the endogenous clock, and paradoxically, jet lag-associated abnormality was absent when endogenous circadian oscillations were genetically disrupted.


Asunto(s)
Ritmo Circadiano , Síndrome Jet Lag/fisiopatología , Micción , Animales , Conducta Animal , Relojes Circadianos , Modelos Animales de Enfermedad , Síndrome Jet Lag/genética , Locomoción , Masculino , Ratones , Ratones Noqueados , Actividad Motora , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...