Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 16550, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34400705

RESUMEN

Individual authentication using artefact metrics has received increasing attention, as greater importance has been placed on the security of individual information. These artefact metrics must satisfy the requirements of individuality, measurement stability, durability, and clone resistance, in addition to possessing unique physical features. In this study, we proposed that nanostructures of synthetic quartz (SQ) deposited on an SQ plate may provide sophisticated artefact metrics if morphological changes could be intentionally introduced into the SQ nanostructures at certain positions. We fabricated SQ nanopillars using a mass-production method (ultraviolet nanoimprint lithography) and investigated their mechanical deformation using nanoindentation with a spheroid diamond tip through a loading and unloading cycle. The SQ nanopillars with an aspect ratio of 1 (i.e., diameters D of 100 and 200 nm with corresponding heights H of 100 and 200 nm, respectively) could be plastically deformed without collapsing within a specified pillar-array format at programmed positions. The plastically deformed SQ nanopillar arrays demonstrated multi-scale (sub-millimetre, micrometre, and nanometre) and multi-level (shape, area, diameter, and height) individuality authentication and clone resistance. Because SQ is physically and chemically stable and durable, individuality authentication can be a highly reliable tool on Earth and in space.

2.
Sensors (Basel) ; 18(11)2018 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-30405086

RESUMEN

For many decades, ultrasonic imaging inspection has been adopted as a principal method to detect multiple defects, e.g., void and corrosion. However, the data interpretation relies on an inspector's subjective judgment, thus making the results vulnerable to human error. Nowadays, advanced computer vision techniques reveal new perspectives on the high-level visual understanding of universal tasks. This research aims to develop an efficient automatic ultrasonic image analysis system for nondestructive testing (NDT) using the latest visual information processing technique. To this end, we first established an ultrasonic inspection image dataset containing 6849 ultrasonic scan images with full defect/no-defect annotations. Using the dataset, we performed a comprehensive experimental comparison of various computer vision techniques, including both conventional methods using hand-crafted visual features and the most recent convolutional neural networks (CNN) which generate multiple-layer stacking for representation learning. In the computer vision community, the two groups are referred to as shallow and deep learning, respectively. Experimental results make it clear that the deep learning-enabled system outperformed conventional (shallow) learning schemes by a large margin. We believe this benchmarking could be used as a reference for similar research dealing with automatic defect detection in ultrasonic imaging inspection.

3.
Langmuir ; 34(32): 9366-9375, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30039971

RESUMEN

In UV nanoimprinting, the selection of monomers suitable for sub-15 nm patterning is difficult because the filling behavior of resin at this scale still remains scientifically unclear. We demonstrate sub-15 nm patterning by UV nanoimprinting using silica molds with 20, 15, and 7 nm diameter holes; however, the 7 nm diameter pillar patterns were not fabricated using hydroxy-containing monomers. The filling behavior into silica holes of around 10 nm depended on the chemical structure of the monomers. Resonance shear measurements revealed the following: (1) The viscosities of hydroxy-containing monomers confined between chlorodimethyl(3,3,3-trifluoropropyl)silane (FAS3-Cl)-modified surfaces began to increase at distances shorter than those of the monomers between unmodified surfaces. (2) The monomers confined between tridecafluoro-1,1,2,2-tetrahydrooctyltrimethoxysilane-modified surfaces were squeezed out when the surface-surface distance decreased at less than 7 nm. The measured viscosities between the FAS3-Cl-modified silica surfaces were correlated with the insufficient filling behavior into the silica holes of around 10 nm in UV nanoimprinting. Contact angle measurements provided an additional insight that a higher wettability of the monomers onto the antisticking chemisorbed monolayers resulted in imprinted patterns with higher aspect ratios. Considering the increase in the monomer viscosity in the nanospace and the wettability of monomers onto chemisorbed monolayers, we concluded that the monomer showing low viscosity under confinement and high wettability onto the mold surface was suitable for single-digit nanometer UV nanoimprinting.

4.
ACS Appl Mater Interfaces ; 9(7): 6591-6598, 2017 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-28117973

RESUMEN

Ultraviolet (UV) nanoimprinting has the potential to fabricate sub-15 nm resin patterns, but the interfacial fluidity of organic monomers near monomer liquid/mold solid interfaces related to filling nanoscale mold recesses with UV-curable resins still remains unclear. In this study, we demonstrated that surface forces and resonance shear measurements were helpful to select a surface modifier appropriate for silica mold surfaces for UV nanoimprinting with the low-viscosity monomer 1,10-decanediol diacrylate. Surface forces between silica surfaces mediated with the diacrylate monomer and fluidities of the monomer were investigated with nanometer resolution. Chemical vapor surface modification of silica surfaces with chlorodimethyl(3,3,3-trifluoropropyl)silane (FAS3-Cl) and tridecafluoro-1,1,2,2-tetrahydrooctyltrimethoxysilane (FAS13) gave fluorinated silica surfaces with root-mean-square roughness of less than 0.24 nm suitable for the measurements. When the distance D between two silica surfaces was decreased stepwise in the range of 0-30 nm, monomer viscosity between cleaned silica surfaces increased markedly at D < 6 nm. Surface modification with FAS3-Cl suppressed this increase of interfacial monomer viscosity. In contrast, FAS13-modified silica surfaces caused a jump-in phenomenon at approximately D = 7-9 nm, suddenly decreasing to D = 1 nm as the monomer fluid layer was squeezed out. We concluded that FAS3-Cl was appropriate as a fluorinated surface modifier for silica molds used in UV nanoimprinting with an oleophilic low-viscosity monomer, because the chemisorbed monolayer maintained low monomer viscosity near the surface/monomer interface, in addition to its low surface free energy and short CF3CH2CH2- group.

5.
ACS Appl Mater Interfaces ; 8(44): 30628-30634, 2016 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-27767296

RESUMEN

Ultraviolet (UV) nanoimprint lithography is a promising nanofabrication technology with cost efficiency and high throughput for sub-20 nm size semiconductor, data storage, and optical devices. To test formability of organic resist mask patterns, we investigated whether the type of polymerizable di(meth)acrylate monomer affected the fabrication of cured resin nanopillars by UV nanoimprinting using molds with pores of around 20 nm. We used carbon-coated, porous, anodic aluminum oxide (AAO) films prepared by electrochemical oxidation and thermal chemical vapor deposition as molds, because the pore diameter distribution in the range of 10-40 nm was suitable for combinatorial testing to investigate whether UV-curable resins comprising each monomer were filled into the mold recesses in UV nanoimprinting. Although the UV-curable resins, except for a bisphenol A-based one, detached from the molds without pull-out defects after radical photopolymerization under UV light, the number of cured resin nanopillars was independent of the viscosity of the monomer(s) in each resin. The number of resin nanopillars increased and their diameter decreased as the number of hydroxy groups in the aliphatic diacrylate monomers increased. It was concluded that the filling of the carbon-coated pores having diameters of around 20 nm with UV-curable resins was promoted by the presence of hydroxy groups in the aliphatic di(meth)acrylate monomers.

6.
Langmuir ; 31(14): 4188-95, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25793911

RESUMEN

We used fluorescence microscopy to show that low adsorption of resin components by a mold surface was necessary for continuous ultraviolet (UV) nanoimprinting, as well as generation of a low release energy on detachment of a cured resin from a template mold. This is because with low mold pollution, fracture on demolding occurred at the interface between the mold and cured resin surfaces rather than at the outermost part of the cured resin. To achieve low mold pollution, we investigated the radical photopolymerization behaviors of fluorescent UV-curable resins and the mechanical properties (fracture toughness, surface hardness, and release energy) of the cured resin films for six types of di(meth)acrylate-based monomers with similar chemical structures, in which polar hydroxy and aromatic bulky bisphenol moieties and methacryloyl or acryloyl reactive groups were present or absent. As a result, we selected bisphenol A glycerolate dimethacrylate (BPAGDM), which contains hydroxy, bisphenol, and methacryloyl moieties, which give good mechanical properties, monomer bulkiness, and mild reactivity, respectively, as a suitable base monomer for UV nanoimprinting under an easily condensable alternative chlorofluorocarbon (HFC-245fa) atmosphere. The fluorescent UV-curable BPAGDM resin was used for UV nanoimprinting and lithographic reactive ion etching of a silicon surface with 32 nm line-and-space patterns without a hard metal layer.

7.
Langmuir ; 30(24): 7127-33, 2014 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-24892792

RESUMEN

We investigated reactive fluorinated (meth)acrylate monomers and macromonomers that caused segregation at the cured resin surface of a viscous hydroxy-containing monomer, glycerol 1,3-diglycerolate diacrylate (GDD), and decreased the demolding energy in ultraviolet (UV) nanoimprinting with spin-coated films under a condensable alternative chlorofluorocarbon gas atmosphere. The X-ray photoelectron spectroscopy and contact angle measurements used to determine the surface free energy suggested that a nonvolatile silicone-based methacrylate macromonomer with fluorinated alkyl groups segregated at the GDD-based cured resin surface and decreased the surface free energy, while fluorinated acrylate monomers hardly decreased the surface free energy because of their evaporation during the annealing of the spin-coated films. The average demolding energy of GDD-based cured resins with the macromonomer having fluorinated alkyl groups was smaller than that with the macromonomer having hydrocarbon alkyl groups. The fluorinated alkyl groups were responsible for decreasing the demolding energy rather than the polysiloxane main chains. We demonstrated that the GDD-based UV-curable resin with the fluorinated silicone-based macromonomer was suitable for step-and-repeat UV nanoimprinting with a bare silica mold, in addition to silica molds treated by chemical vapor surface modification with trifluoro-1,1,2,2-tetrahydropropyltrimethoxysilane (FAS3) and tridecafluoro-1,1,2,2-tetrahydrooctyltrimethoxysilane (FAS13).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA