Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
ACS Omega ; 9(19): 21647-21657, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38764661

RESUMEN

Plasmodium malate-quinone oxidoreductase (MQO) is a membrane flavoprotein catalyzing the oxidation of malate to oxaloacetate and the reduction of quinone to quinol. Recently, using a yeast expression system, we demonstrated that MQO, expressed in place of mitochondrial malate dehydrogenase (MDH), contributes to the TCA cycle and the electron transport chain in mitochondria, making MQO attractive as a promising drug target in Plasmodium malaria parasites, which lack mitochondrial MDH. However, there is little information on the structure of MQO and its catalytic mechanism, information that will be required to develop novel drugs. Here, we investigated the catalytic site of P. falciparum MQO (PfMQO) using our yeast expression system. We generated a model structure for PfMQO with the AI tool AlphaFold and used protein footprinting by acetylation with acetic anhydride to analyze the surface topology of the model, confirming the computational prediction to be reasonably accurate. Moreover, a putative catalytic site, which includes a possible flavin-binding site, was identified by this combination of protein footprinting and structural prediction model. This active site was analyzed by site-directed mutagenesis. By measuring enzyme activity and protein expression levels in the PfMQO mutants, we showed that several residues at the active site are essential for enzyme function. In addition, a single substitution mutation near the catalytic site resulted in enhanced sensitivity to ferulenol, an inhibitor of PfMQO that competes with malate for binding to the enzyme. This strongly supports the notion that the substrate binds to the proposed catalytic site. Then, the location of the catalytic site was demonstrated by structural comparison with a homologous enzyme. Finally, we used our results to propose a mechanism for the catalytic activity of MQO by reference to the mechanism of action of structurally or functionally homologous enzymes.

2.
Cancer Sci ; 115(6): 1936-1947, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38590281

RESUMEN

The immunoglobulin superfamily (IgSF) is one of the largest families of cell-surface molecules involved in various cell-cell interactions, including cancer-stromal interactions. In this study, we undertook a comprehensive RT-PCR-based screening for IgSF molecules that promote experimental lung metastasis in mice. By comparing the expression of 325 genes encoding cell-surface IgSF molecules between mouse melanoma B16 cells and its highly metastatic subline, B16F10 cells, we found that expression of the immunoglobulin superfamily member 3 gene (Igsf3) was significantly enhanced in B16F10 cells than in B16 cells. Knockdown of Igsf3 in B16F10 cells significantly reduced lung metastasis following intravenous injection into C57BL/6 mice. IGSF3 promoted adhesion of B16F10 cells to vascular endothelial cells and functioned as a homophilic cell adhesion molecule between B16F10 cells and vascular endothelial cells. Notably, the knockdown of IGSF3 in either B16F10 cells or vascular endothelial cells suppressed the transendothelial migration of B16F10 cells. Moreover, IGSF3 knockdown suppressed the extravasation of B16F10 cells into the lungs after intravenous injection. These results suggest that IGSF3 promotes the metastatic potential of B16F10 cells in the lungs by facilitating their adhesion to vascular endothelial cells.


Asunto(s)
Adhesión Celular , Endotelio Vascular , Neoplasias Pulmonares , Melanoma Experimental , Ratones Endogámicos C57BL , Animales , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Ratones , Adhesión Celular/genética , Melanoma Experimental/patología , Melanoma Experimental/metabolismo , Melanoma Experimental/genética , Línea Celular Tumoral , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Inmunoglobulinas/metabolismo , Inmunoglobulinas/genética , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Técnicas de Silenciamiento del Gen , Humanos
3.
Biosci Microbiota Food Health ; 43(1): 55-63, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38188665

RESUMEN

Nanosized membrane vesicles (MVs) released by bacteria play important roles in both bacteria-bacteria and bacteria-host interactions. Some gram-positive lactic acid bacteria produce MVs exhibiting immunoregulatory activity in the host. We found that both bacterial cells and MVs of Limosilactobacillus antri JCM 15950, isolated from the human stomach mucosa, enhance immunoglobulin A production by murine Peyer's patch cells. However, the thick cell walls of gram-positive bacteria resulted in low MV production, limiting experiments and applications using MVs. In this study, we evaluated the effects of glycine, which inhibits cell wall synthesis, on the immunostimulatory MV productivity of L. antri. Glycine inhibited bacterial growth while increasing MV production, with 20 g/L glycine increasing MV production approximately 12-fold. Glycine was most effective at increasing MV production when added in the early exponential phase, which indicated that cell division in the presence of glycine increased MV production. Finally, glycine increased MV productivity approximately 16-fold. Furthermore, glycine-induced MVs promoted interleukin-6 production by macrophage-like J774.1 cells, and the immunostimulatory activity was comparable to that of spontaneously produced MVs. Our results indicate that glycine is an effective agent for improving the production of MVs with immunostimulatory activity in gram-positive lactic acid bacteria, which can be applied as mucosal adjuvants and functional foods.

4.
Biol Pharm Bull ; 47(1): 23-27, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38171776

RESUMEN

Mammalian type 2 carnitine parmitoyltransferase (EC 2.3.1.21), abbreviated as CPT2, is an enzyme involved in the translocation of fatty acid into the mitochondrial matrix space, and catalyzes the reaction acylcarnitine + CoA = acyl-CoA + carnitine. When rat CPT2 was expressed in Escherichia coli, its behavior was dependent on the presence or absence of i) its mitochondrial localization sequence and ii) a short amino acid sequence thought to anchor it to the mitochondrial inner membrane: CPT2 containing both sequences behaved as a hydrophobic protein, while recombinant CPT2 lacking both regions behaved as a water soluble protein; if only one region was present, the resultant proteins were observed in both fractions. Because relatively few protein species could be obtained from bacterial lysates as insoluble pellets under the experimental conditions used, selective enrichment of recombinant CPT2 protein containing both hydrophobic sequences was easily achieved. Furthermore, when CPT2 enriched in insoluble fraction was resuspended in an appropriate medium, it showed catalytic activity typical of CPT2: it was completely suppressed by the CPT2 inhibitor, ST1326, but not by the CPT1 inhibitor, malonyl-CoA. Therefore, we conclude that the bacterial expression system is an effective tool for characterization studies of mammalian CPT2.


Asunto(s)
Carnitina O-Palmitoiltransferasa , Mitocondrias , Ratas , Animales , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/química , Mitocondrias/metabolismo , Malonil Coenzima A/metabolismo , Malonil Coenzima A/farmacología , Ácidos Grasos/metabolismo , Proteínas Recombinantes/genética , Carnitina/metabolismo , Mamíferos/metabolismo
5.
Top Stroke Rehabil ; 31(5): 446-456, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38224997

RESUMEN

BACKGROUND: Unstable board intervention for patients with stroke improves sitting balance and trunk function. However, because patients with severe stroke are at high risk of falling, it is mostly adapted in mild cases. OBJECTIVE: We aimed to examine the effect of standing unstable board intervention for the non-paralyzed lower limbs on sitting balance in patients with hemiplegia. METHODS: The participants were 42 patients with stroke who were randomly assigned to a control or intervention group. In the intervention group, the non-paralyzed leg was placed on an unstable board, and the patient wore a knee-ankle-foot orthosis on the paralyzed side and practiced standing and weight-bearing exercises on the unstable board for 3 days. The outcomes were the angle of righting reaction of the neck, trunk, and both lower legs and the movement distance of the center of pressure of the righting reaction from lateral tilted sitting. RESULTS: In the intervention group, the righting reaction angle of the trunk to the paralyzed and non-paralyzed sides and the movement distance of the center of pressure were increased significantly after the unstable board intervention. CONCLUSION: The standing unstable board intervention for the non-paralyzed lower limb increased sensory input to the non-paralyzed side of the trunk weight-bearing on the lower limb of the paralyzed side. The increase in the righting reaction angle and the movement distance of the center of pressure contributed to improved sitting balance.


Asunto(s)
Hemiplejía , Equilibrio Postural , Sedestación , Rehabilitación de Accidente Cerebrovascular , Humanos , Hemiplejía/rehabilitación , Hemiplejía/fisiopatología , Hemiplejía/etiología , Masculino , Femenino , Equilibrio Postural/fisiología , Persona de Mediana Edad , Anciano , Rehabilitación de Accidente Cerebrovascular/métodos , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/fisiopatología , Terapia por Ejercicio/métodos , Aparatos Ortopédicos , Pierna/fisiopatología
6.
Clin Cancer Res ; 29(21): 4479-4491, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37616468

RESUMEN

PURPOSE: Deregulated metabolism in cancer cells represents a vulnerability that may be therapeutically exploited to benefit patients. One such target is nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD+ salvage pathway. NAMPT is necessary for efficient NAD+ production and may be exploited in cells with increased metabolic demands. We have identified NAMPT as a dependency in rhabdomyosarcoma (RMS), a malignancy for which novel therapies are critically needed. Here we describe the effect of NAMPT inhibition on RMS proliferation and metabolism in vitro and in vivo. EXPERIMENTAL DESIGN: Assays of proliferation and cell death were used to determine the effects of pharmacologic NAMPT inhibition in a panel of ten molecularly diverse RMS cell lines. Mechanism of the clinical NAMPTi OT-82 was determined using measures of NAD+ and downstream NAD+-dependent functions, including energy metabolism. We used orthotopic xenograft models to examine tolerability, efficacy, and drug mechanism in vivo. RESULTS: Across all ten RMS cell lines, OT-82 depleted NAD+ and inhibited cell growth at concentrations ≤1 nmol/L. Significant impairment of glycolysis was a universal finding, with some cell lines also exhibiting diminished oxidative phosphorylation. Most cell lines experienced profound depletion of ATP with subsequent irreversible necrotic cell death. Importantly, loss of NAD and glycolytic activity were confirmed in orthotopic in vivo models, which exhibited complete tumor regressions with OT-82 treatment delivered on the clinical schedule. CONCLUSIONS: RMS is highly vulnerable to NAMPT inhibition. These findings underscore the need for further clinical study of this class of agents for this malignancy.


Asunto(s)
NAD , Rabdomiosarcoma , Humanos , NAD/metabolismo , Citocinas/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Pirazoles , Necrosis , Rabdomiosarcoma/tratamiento farmacológico , Línea Celular Tumoral
7.
Sci Total Environ ; 895: 165195, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37391138

RESUMEN

The effects of the chemical components of fine particulate matter (PM2.5) have been drawing attention. However, information regarding the impact of low PM2.5 concentrations is limited. Hence, we aimed to investigate the short-term effects of the chemical components of PM2.5 on pulmonary function and their seasonal differences in healthy adolescents living on an isolated island without major artificial sources of air pollution. A panel study was repeatedly conducted twice a year for one month every spring and fall from October 2014 to November 2016 on an isolated island in the Seto Inland Sea, which has no major artificial sources of air pollution. Daily measurements of peak expiratory flow (PEF) and forced expiratory volume in 1 s (FEV1) were performed in 47 healthy college students, and the concentrations of 35 chemical components of PM2.5 were analyzed every 24 h. Using a mixed-effects model, the relationship between pulmonary function values and concentrations of PM2.5 components was analyzed. Significant associations were observed between several PM2.5 components and decreased pulmonary function. Among the ionic components, sulfate was strongly related to decreases in PEF and FEV1 (-4.20 L/min [95 % confidence interval (CI): -6.40 to -2.00] and - 0.04 L [95 % CI: -0.05 to -0.02] per interquartile range increase, respectively). Among the elemental components, potassium induced the greatest reduction in PEF and FEV1. Therefore, PEF and FEV1 were significantly reduced as the concentrations of several PM2.5 components increased during fall, with minimal changes observed during spring. Several chemical components of PM2.5 were significantly associated with decreased pulmonary function among healthy adolescents. The concentrations of PM2.5 chemical components differed by season, suggesting the occurrence of distinct effects on the respiratory system depending on the type of component.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Adolescente , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Exposición a Riesgos Ambientales , Pulmón
8.
Children (Basel) ; 10(5)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37238422

RESUMEN

BACKGROUND: The number of children infected with novel coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has increased during the outbreak of the Omicron strain. Hyperferritinemia has been reported in severe cases of COVID-19, and in children or neonates with multisystem inflammatory syndrome (MIS). Hyperferritinemia is considered to be one of the signs of MIS, but thus far, there have been few summarized reports on it. We retrospectively analyzed four infants less than 3 months of age with SARS-CoV-2 infections treated in our institution during the outbreak of the Omicron strain. RESULTS: most patients were in good condition, but hyperferritinemia was observed in all of four cases. CONCLUSIONS: Hyperferritinemia can be observed in infantile COVID-19 patients even with mild symptoms. It is necessary to carefully monitor their clinical course and monitor the patients.

9.
Microbiol Spectr ; 11(3): e0016823, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37036365

RESUMEN

The emergence of drug-resistant variants of malaria-causing Plasmodium parasites is a life-threatening problem worldwide. Investigation of the physiological function of individual parasite proteins is a prerequisite for a deeper understanding of the metabolic pathways required for parasite survival and therefore a requirement for the development of novel antimalarials. A Plasmodium membrane protein, malate-quinone oxidoreductase (MQO), is thought to contribute to the tricarboxylic acid (TCA) cycle and the electron transport chain (ETC) and is an antimalarial drug target. However, there is little information on its expression and function. Here, we investigated the function of Plasmodium falciparum MQO (PfMQO) in mitochondria using a yeast heterologous expression system. Using a yeast deletion mutant of mitochondrial malate dehydrogenase (MDH1), which is expected to be functionally similar to MQO, as a background strain, we successfully constructed PfMQO-expressing yeast. We confirmed that expression of PfMQO complemented the growth defect of the MDH1 deletion, indicating that PfMQO can adopt the metabolic role of MDH1 in energy transduction for growth in the recombinant yeast. Analysis of cell fractions confirmed that PfMQO was expressed and enriched in yeast mitochondria. By measuring MQO activity, we also confirmed that PfMQO expressed in yeast mitochondria was active. Measurement of oxygen consumption rates showed that mitochondrial respiration was driven by the TCA cycle through PfMQO. In addition, we found that MQO activity was enhanced when intact mitochondria were sonicated, indicating that the malate binding site of PfMQO is located facing the mitochondrial matrix. IMPORTANCE We constructed a model organism to study the physiological role and function of P. falciparum malate-quinone oxidoreductase (PfMQO) in a yeast expression system. PfMQO is actively expressed in yeast mitochondria and functions in place of yeast mitochondrial malate dehydrogenase, which catalyzes the oxidation of malate to oxaloacetate in the TCA cycle. The catalytic site for the oxidation of malate in PfMQO, which is a membrane-bound protein, faces into the mitochondrial matrix, not the mitochondrial inner membrane space. Our findings clearly show that PfMQO is a TCA cycle enzyme and is coupled with the ETC via ubiquinone reduction.


Asunto(s)
Antimaláricos , Malaria Falciparum , Parásitos , Plasmodium , Animales , Malato Deshidrogenasa/genética , Malato Deshidrogenasa/metabolismo , Parásitos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Malatos/metabolismo , Malaria Falciparum/parasitología , Proteínas de la Membrana , Quinonas
10.
Rinsho Shinkeigaku ; 63(1): 31-36, 2023 Jan 28.
Artículo en Japonés | MEDLINE | ID: mdl-36567104

RESUMEN

An 80-year-old woman presented with subacute right lower limb pain and bilateral lower limb weakness. MRI of the spine showed marked cauda equina enlargement with contrast enhancement. Cerebrospinal fluid (CSF) examination showed elevated cell count, decreased glucose, and elevated protein. Cytology of the CSF showed class V, which together with B-cell clonality by flow cytometry, led to the diagnosis of primary central nervous system lymphoma (PCNSL). The patient was treated with steroid, radiation, and chemotherapy. Despite the reduction in lesion size, her neurological symptoms revealed no improvement. PCNSL with cauda equina lesions are rare and often require highly invasive cauda equina biopsy for diagnosis. In recent years, some studies reported useful CSF biomarkers, but they may have some problems. Therefore, as in this case, the combination of cytology, flow cytometry and, CSF biomarkers could be a substitute method for invasive biopsies, and contribute to the early treatment of PCNSL.


Asunto(s)
Cauda Equina , Linfoma , Humanos , Femenino , Anciano de 80 o más Años , Cauda Equina/diagnóstico por imagen , Cauda Equina/patología , Biopsia , Linfocitos B , Sistema Nervioso Central , Linfoma/diagnóstico por imagen , Linfoma/patología
11.
Chem Biol Drug Des ; 101(4): 865-872, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36527173

RESUMEN

Two natural products, bongkrekic acid and carboxyatractyloside, are known to specifically inhibit the mitochondrial ADP/ATP carrier from its matrix side and cytosolic side, respectively, in concentration ranges of 10-6  M. In the present study, we investigated the manner of action of a synthetic bongkrekic acid derivative, KH-17, lacking three methyl groups, one methoxy group, and five internal double bonds, on the mitochondrial ADP/ATP carrier. At slightly acidic pH, KH-17 inhibited mitochondrial [3 H]ADP uptake, but its inhibitory action was about 10 times weaker than that of its parental compound, bongkrekic acid. The main site of action of KH-17 was confirmed as the matrix side of the ADP/ATP carrier by experiments using submitochondrial particles, which have an inside-out orientation of the inner mitochondrial membrane. However, when we added KH-17 to mitochondria at neutral pH, it had a weak inhibitory effect on [3 H]ADP uptake, and its inhibitory strength was similar to that of bongkrekic acid. These results indicated that KH-17 weakly inhibits the ADP/ATP carrier not only from the matrix side but also from the cytosolic side. To ascertain whether this interpretation was correct, we examined the effects of KH-17 and carboxyatractyloside on mitochondrial [3 H]ADP uptake at two [3 H]ADP concentrations. We found that both KH-17 and carboxyatractyloside showed a stronger inhibitory effect at the lower [3 H]ADP concentration. Therefore, we concluded that the bongkrekic acid derivative, KH-17, weakly inhibits the mitochondrial ADP/ATP carrier from both sides of the inner mitochondrial membrane. These results suggested that the elimination of three methyl groups, one methoxy group, and five internal double bonds present in bongkrekic acid altered its manner of action towards the mitochondrial ADP/ATP carrier. Our data will help to improve our understanding of the interaction between bongkrekic acid and the mitochondrial ADP/ATP carrier.


Asunto(s)
Translocasas Mitocondriales de ADP y ATP , Membranas Mitocondriales , Adenosina Difosfato , Adenosina Trifosfato , Ácido Bongcréquico/farmacología , Mitocondrias , Translocasas Mitocondriales de ADP y ATP/química
12.
J Bacteriol ; 205(1): e0038922, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36475831

RESUMEN

Bacteroides species can use fumarate and oxygen as terminal electron acceptors during cellular respiration. In the human gut, oxygen diffuses from intestinal epithelial cells supplying "nanaerobic" oxygen levels. Many components of the anaerobic respiratory pathway have been determined, but such analyses have not been performed for nanaerobic respiration. Here, we present genetic, biochemical, enzymatic, and mass spectrometry analyses to elucidate the nanaerobic respiratory pathway in Bacteroides fragilis. Under anaerobic conditions, the transfer of electrons from NADH to the quinone pool has been shown to be contributed by two enzymes, NQR and NDH2. We find that the activity contributed by each under nanaerobic conditions is 77 and 23%, respectively, similar to the activity levels under anaerobic conditions. Using mass spectrometry, we show that the quinone pool also does not differ under these two conditions and consists of a mixture of menaquinone-8 to menaquinone-11, with menaquinone-10 predominant under both conditions. Analysis of fumarate reductase showed that it is synthesized and active under anaerobic and nanaerobic conditions. Previous RNA sequencing data and new transcription reporter assays show that expression of the cytochrome bd oxidase gene does not change under these conditions. Under nanaerobic conditions, we find both increased CydA protein and increased cytochrome bd activity. Reduced-minus-oxidized spectra of membranes showed the presence of heme d when the bacteria were grown in the presence of protoporphyrin IX and iron under both anaerobic and nanaerobic conditions, suggesting that the active oxidase can be assembled with or without oxygen. IMPORTANCE By performing a comprehensive analysis of nanaerobic respiration in Bacteroides fragilis, we show that this organism maintains capabilities for anaerobic respiration on fumarate and nanaerobic respiration on oxygen simultaneously. The contribution of the two NADH:quinone oxidoreductases and the composition of the quinone pool are the same under both conditions. Fumarate reductase and cytochrome bd are both present, and which of these terminal enzymes is active in electron transfer depends on the availability of the final electron acceptor: fumarate or oxygen. The synthesis of cytochrome bd and fumarate reductase under both conditions serves as an adaptation to an environment with low oxygen concentrations so that the bacteria can maximize energy conservation during fluctuating environmental conditions or occupation of different spatial niches.


Asunto(s)
Bacteroides fragilis , Succinato Deshidrogenasa , Humanos , Bacteroides fragilis/genética , Bacteroides fragilis/metabolismo , Anaerobiosis , Succinato Deshidrogenasa/metabolismo , Vitamina K 2 , NAD/metabolismo , Transporte de Electrón , Citocromos/metabolismo , Quinonas/metabolismo , Respiración , Oxígeno/metabolismo , Fumaratos/metabolismo
13.
Microbiol Immunol ; 67(3): 120-128, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36480238

RESUMEN

Two messenger RNA (mRNA) vaccines of BNT162b2 and mRNA-1273 were licensed. The most common adverse event is regional pain at the injection site in 80%. As systemic reactions, fatigue and headache were noted in 40%-60% and febrile illness in 10%-40% of the recipients. To investigate the mechanism of adverse events, cytokine profiles were investigated in mice. Muscle tissue and serum samples were obtained on days 0, 1, 3, 5, and 7, and at 2 and 4 weeks after the first dose. The second dose was given 4 weeks after the first dose and samples were obtained. After inoculation with 0.1 mL of mRNA-1273, IFN-γ and IL-2 were detected in muscle tissues and serum samples on day 1 of the second doses, and similar profiles were observed for IL-4, IL-5, and IL-12 production. mRNA-1273 induced higher levels of Th1 and Th2 cytokines. TNF-α was induced in muscle tissues on day 1 of the first dose and enhanced on day 1 of the second dose after inoculation with BNT162b2 and mRNA-1273. IL-6 was also detected in muscle tissue on day 1 of the first dose, but it decreased after day 3, and enhanced production was demonstrated on day 1 of the second dose. Granulocyte colony-stimulating factor in muscle tissues showed a similar profile. The induction of inflammatory cytokines in the mouse model is related to the cause of adverse events in humans, with a higher incidence of adverse events after the second dose.


Asunto(s)
Vacuna nCoV-2019 mRNA-1273 , Vacuna BNT162 , Humanos , Animales , Ratones , Vacunas de ARNm , ARN Mensajero/genética , Citocinas
14.
J Neurochem ; 165(3): 303-317, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36547371

RESUMEN

Cells possess intrinsic features that are inheritable via epigenetic regulation, such as DNA methylation and histone modification. These inheritable features maintain a unique gene expression pattern, underlying cellular memory. Because of the degradation or displacement of mitotic chromosomes, most transcription factors do not contribute to cellular memory. However, accumulating in vitro evidence indicates that some transcription factors can be retained in mitotic chromosomes called as bookmarking. Such transcription factors may contribute to a novel third mechanism of cellular memory. Since most findings of transcription factor bookmarking have been reported in vitro, little is currently known in vivo. In the neural tube of mouse embryos, we discovered that OLIG2, a basic helix loop helix (bHLH) transcription factor that regulates proliferation of neural progenitors and the cell fate of motoneurons and oligodendrocytes, binds to chromatin through every cell cycle including M-phase. OLIG2 chromosomal localization coincides with mitotic cell features such as the phosphorylation of histone H3, KI67, and nuclear membrane breakdown. Chromosomal localization of OLIG2 is regulated by an N-terminus triple serine motif. Photobleaching analysis revealed slow OLIG2 mobility, suggesting a high affinity of OLIG2 to DNA. In Olig2 N-terminal deletion mutant mice, motoneurons and oligodendrocyte progenitor numbers are reduced in the neural tube, suggesting that the bookmarking regulatory domain is important for OLIG2 function. We conclude that OLIG2 is a de novo in vivo bookmarking transcription factor. Our results demonstrate the presence of in vivo bookmarking in a living organism and illustrate a novel function of transcription factors.


Asunto(s)
Epigénesis Genética , Factores de Transcripción , Ratones , Animales , Factores de Transcripción/genética , Tubo Neural/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos/genética , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/genética , Oligodendroglía/metabolismo
15.
Ecol Evol ; 12(12): e9562, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36479029

RESUMEN

Fertilization mode may affect sperm characteristics, such as morphology, velocity, and motility. However, there is little information on how fertilization mode affects sperm evolution because several factors (e.g., sperm competition) are intricately intertwined when phylogenetically distant species are compared. Here, we investigated sperm characteristics by comparing seven externally and four internally fertilizing marine fishes from three different groups containing close relatives, considering sperm competition levels. The sperm head was significantly slenderer in internal fertilizers than in external fertilizers, suggesting that a slender head is advantageous for swimming in viscous ovarian fluid or in narrow spaces of the ovary. In addition, sperm motility differed between external and internal fertilizers; sperm of external fertilizers were only motile in seawater, whereas sperm of internal fertilizers were only motile in an isotonic solution. These results suggest that sperm motility was adapted according to fertilization mode. By contrast, total sperm length and sperm velocity were not associated with fertilization mode, perhaps because of the different levels of sperm competition. Relative testis mass (an index of sperm competition level) was positively correlated with sperm velocity and negatively correlated with the ratio of sperm head length to total sperm length. These findings suggest that species with higher levels of sperm competition have faster sperm with longer flagella relative to the head length. These results contradict the previous assumption that the evolution of internal fertilization increases the total sperm length. In addition, copulatory behavior with internal insemination may involve a large genital morphology, but this is not essential in fish, suggesting the existence of various sperm transfer methods. Although the power of our analyses is not strong because of the limited number of species, we propose a new scenario of sperm evolution in which internal fertilization would increase sperm head length, but not total sperm length, and change sperm motility.

16.
Sci Immunol ; 7(75): eabo3170, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36149943

RESUMEN

Gain-of-function (GOF) mutations in CXCR4 cause WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome, characterized by infections, leukocyte retention in bone marrow (BM), and blood leukopenias. B lymphopenia is evident at early progenitor stages, yet why do CXCR4 GOF mutations that cause B (and T) lymphopenia remain obscure? Using a CXCR4 R334X GOF mouse model of WHIM syndrome, we showed that lymphopoiesis is reduced because of a dysregulated mesenchymal stem cell (MSC) transcriptome characterized by a switch from an adipogenic to an osteolineage-prone program with limited lymphopoietic activity. We identify lymphotoxin beta receptor (LTßR) as a critical pathway promoting interleukin-7 (IL-7) down-regulation in MSCs. Blocking LTßR or CXCR4 signaling restored IL-7 production and B cell development in WHIM mice. LTßR blocking also increased production of IL-7 and B cell activating factor (BAFF) in secondary lymphoid organs (SLOs), increasing B and T cell numbers in the periphery. These studies revealed that LTßR signaling in BM MSCs and SLO stromal cells limits the lymphocyte compartment size.


Asunto(s)
Síndromes de Inmunodeficiencia , Linfopenia , Animales , Factor Activador de Células B , Síndromes de Inmunodeficiencia/complicaciones , Síndromes de Inmunodeficiencia/genética , Interleucina-7 , Receptor beta de Linfotoxina , Ratones , Enfermedades de Inmunodeficiencia Primaria , Nicho de Células Madre , Linfocitos T , Verrugas
18.
Vaccines (Basel) ; 10(8)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36016227

RESUMEN

Increasing numbers of patients with zoster were reported recently, and recombinant zoster vaccine (Shingrix®) was licensed using the AS01B adjuvant system. Although it induces highly effective protection, a high incidence of local adverse events (regional pain, erythema, and swelling) has been reported with systemic reactions of fever, fatigue, and headache. To investigate the mechanism of local adverse events, cytokine profiles were investigated in mice injected with 0.1 mL of Shingrix®. Muscle tissue and serum samples were obtained on days 0, 1, 3, 5, and 7, and at 2 and 4 weeks after the first dose. The second dose was given 4 weeks after the first dose and samples were obtained on days 1, 3, 5, 7, and 14. IL-6 and G-CSF were detected in muscle tissues on day 1 of the first injection, decreased on day 3 and afterward, and enhanced production was demonstrated on day 1 of the second dose. In sera, the elevated levels of IL-6 were detected on day 1 of the first dose, and IL-10 was detected on day 1 with increased levels on day 3 of the first dose. IL-4 was detected in muscle tissue on day 1 of the second dose and IL-5 on day 1 of both the first and second doses. IFN-γ production was not enhanced in muscle tissue but increased in serum samples on day 1 of the first dose. These results in the mouse model indicate that the induction of inflammatory cytokines is related to the cause of adverse events in humans.

19.
Biomolecules ; 12(7)2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35883436

RESUMEN

The HSP90 paralog TRAP1 was discovered more than 20 years ago; yet, a detailed understanding of the function of this mitochondrial molecular chaperone remains elusive. The dispensable nature of TRAP1 in vitro and in vivo further complicates an understanding of its role in mitochondrial biology. TRAP1 is more homologous to the bacterial HSP90, HtpG, than to eukaryotic HSP90. Lacking co-chaperones, the unique structural features of TRAP1 likely regulate its temperature-sensitive ATPase activity and shed light on the alternative mechanisms driving the chaperone's nucleotide-dependent cycle in a defined environment whose physiological temperature approaches 50 °C. TRAP1 appears to be an important bioregulator of mitochondrial respiration, mediating the balance between oxidative phosphorylation and glycolysis, while at the same time promoting mitochondrial homeostasis and displaying cytoprotective activity. Inactivation/loss of TRAP1 has been observed in several neurodegenerative diseases while TRAP1 expression is reported to be elevated in multiple cancers and, as with HSP90, evidence of addiction to TRAP1 has been observed. In this review, we summarize what is currently known about this unique HSP90 paralog and why a better understanding of TRAP1 structure, function, and regulation is likely to enhance our understanding of the mechanistic basis of mitochondrial homeostasis.


Asunto(s)
Proteínas HSP90 de Choque Térmico , Mitocondrias , Glucólisis , Proteínas HSP90 de Choque Térmico/metabolismo , Homeostasis , Mitocondrias/metabolismo , Chaperonas Moleculares/metabolismo , Fosforilación Oxidativa
20.
RSC Adv ; 12(3): 1645-1652, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35425160

RESUMEN

Nanostructures exhibit a bactericidal effect owing to physical interaction with the bacterial cell envelope. Here, we aimed to identify the mechanism underlying the bactericidal effect of nanostructures based on bacterial autolysis, in contrast to previous reports focusing on structural characteristics. The time profiles of active cell ratios of the Escherichia coli strains (WT, ΔmltA, ΔmltB, Δslt70), incubation time of the wild-type (WT) strains, and autolysis inhibition of WT strains were evaluated with respect to the bactericidal effect of the applied nanostructures. Addition of Mg2+, an autolysis inhibitor, was not found to cause significant cell damage. The incubation phase was significantly associated with envelope damage. The lytic transglycosylase-lacking strain of Slt70 (Δslt70) also showed only minimal envelope damage. Our results indicate that nanostructures may act by triggering bacterial autolysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...