Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IEEE Trans Magn ; 52(7)2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27499549

RESUMEN

Perpendicular Magnetic Tunneling Junctions (pMTJs) with Ta\CoFeB\MgO have been extensively studied in recent years. However, the effects of the underlayer on the formation of the CoFeB perpendicular magnetic anisotropy (PMA) are still not well understood. Here we report the results of our systematic use of a wide range of elements (Ti, V, Cr, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Hf, Ta, W, Re, Os, Ir, Pt and Au) encompassed by columns IVA, VA, VIA, VIIA and VIIIA of the periodic table as the underlayer in a underlayer\Co20Fe60B20\MgO stack. Our goals were to survey more elements which could conceivably create a PMA in CoFeB and thereby to explore the mechanisms enabling these underlayers to enhance or create the PMA. We found underlayer elements having both an outer shell of 4d electrons (Zr, Nb Mo, and Pd) and 5d electrons (Hf, Ta, W, Re, Ir, and Pt) resulted in the development of a PMA in the MgO-capped Co20Fe60B20. Hybridization between the 3d electrons of the Fe or Co (in the Co20Fe60B20) at the interface with the 4d or 5d electrons of the underlayer is thought to be the cause of the PMA development.

2.
Sci Rep ; 6: 27774, 2016 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-27297638

RESUMEN

Multifunctional materials composed of ultrathin magnetic films with perpendicular magnetic anisotropy combined with ferroelectric substrates represent a new approach toward low power, fast, high density spintronics. Here we demonstrate Co/Ni multilayered films with tunable saturation magnetization and perpendicular anisotropy grown directly on ferroelectric PZT [Pb(Zr0.52Ti0.48)O3] substrate plates. Electric fields up to ±2 MV/m expand the PZT by 0.1% and generate at least 0.02% in-plane compression in the Co/Ni multilayered film. Modifying the strain with a voltage can reduce the coercive field by over 30%. We also demonstrate that alternating in-plane tensile and compressive strains (less than 0.01%) can be used to propagate magnetic domain walls. This ability to manipulate high anisotropy magnetic thin films could prove useful for lowering the switching energy for magnetic elements in future voltage-controlled spintronic devices.

3.
Phys Rev Lett ; 98(11): 117204, 2007 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-17501087

RESUMEN

We report unexpected phenomena during magnetization reversal in ultrathin Co films and Co/Pt multilayers with perpendicular anisotropy. Using magneto-optical Kerr microscopy and magnetic force microscopy we have observed asymmetrical nucleation centers where the reversal begins for one direction of the field only and is characterized by an acute asymmetry of domain-wall mobility. We have also observed magnetic domains with a continuously varying average magnetization, which can be explained in terms of the coexistence of three magnetic phases: up, down, and striped.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...