Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Physiol ; 592(24): 5373-90, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25384780

RESUMEN

The G-protein coupled inwardly rectifying potassium (GIRK, or Kir3) channels are important mediators of inhibitory neurotransmission via activation of G-protein coupled receptors (GPCRs). GIRK channels are tetramers comprising combinations of subunits (GIRK1-4), activated by direct binding of the Gßγ subunit of Gi/o proteins. Heterologously expressed GIRK1/2 exhibit high, Gßγ-dependent basal currents (Ibasal) and a modest activation by GPCR or coexpressed Gßγ. Inversely, the GIRK2 homotetramers exhibit low Ibasal and strong activation by Gßγ. The high Ibasal of GIRK1 seems to be associated with its unique distal C terminus (G1-dCT), which is not present in the other subunits. We investigated the role of G1-dCT using electrophysiological and fluorescence assays in Xenopus laevis oocytes and protein interaction assays. We show that expression of GIRK1/2 increases the plasma membrane level of coexpressed Gßγ (a phenomenon we term 'Gßγ recruitment') but not of coexpressed Gαi3. All GIRK1-containing channels, but not GIRK2 homomers, recruited Gßγ to the plasma membrane. In biochemical assays, truncation of G1-dCT reduces the binding between the cytosolic parts of GIRK1 and Gßγ, but not Gαi3. Nevertheless, the truncation of G1-dCT does not impair activation by Gßγ. In fluorescently labelled homotetrameric GIRK1 channels and in the heterotetrameric GIRK1/2 channel, the truncation of G1-dCT abolishes Gßγ recruitment and decreases Ibasal. Thus, we conclude that G1-dCT carries an essential role in Gßγ recruitment by GIRK1 and, consequently, in determining its high basal activity. Our results indicate that G1-dCT is a crucial part of a Gßγ anchoring site of GIRK1-containing channels, spatially and functionally distinct from the site of channel activation by Gßγ.


Asunto(s)
Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Secuencia de Aminoácidos , Animales , Membrana Celular/metabolismo , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/química , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Activación del Canal Iónico , Ratones , Datos de Secuencia Molecular , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Xenopus
2.
J Biol Chem ; 286(38): 33223-35, 2011 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-21795707

RESUMEN

G protein-activated K(+) channels (Kir3 or GIRK) are activated by direct interaction with Gßγ. Gα is essential for specific signaling and regulates basal activity of GIRK (I(basal)) and kinetics of the response elicited by activation by G protein-coupled receptors (I(evoked)). These regulations are believed to occur within a GIRK-Gα-Gßγ signaling complex. Fluorescent energy resonance transfer (FRET) studies showed strong GIRK-Gßγ interactions but yielded controversial results regarding the GIRK-Gα(i/o) interaction. We investigated the mechanisms of regulation of GIRK by Gα(i/o) using wild-type Gα(i3) (Gα(i3)WT) and Gα(i3) labeled at three different positions with fluorescent proteins, CFP or YFP (xFP). Gα(i3)xFP proteins bound the cytosolic domain of GIRK1 and interacted with Gßγ in a guanine nucleotide-dependent manner. However, only an N-terminally labeled, myristoylated Gα(i3)xFP (Gα(i3)NT) closely mimicked all aspects of Gα(i3)WT regulation except for a weaker regulation of I(basal). Gα(i3) labeled with YFP within the Gα helical domain preserved regulation of I(basal) but failed to restore fast I(evoked). Titrated expression of Gα(i3)NT and Gα(i3)WT confirmed that regulation of I(basal) and of the kinetics of I(evoked) of GIRK1/2 are independent functions of Gα(i). FRET and direct biochemical measurements indicated much stronger interaction between GIRK1 and Gßγ than between GIRK1 and Gα(i3). Thus, Gα(i/o)ßγ heterotrimer may be attached to GIRK primarily via Gßγ within the signaling complex. Our findings support the notion that Gα(i/o) actively regulates GIRK. Although regulation of I(basal) is a function of Gα(i)(GDP), our new findings indicate that regulation of kinetics of I(evoked) is mediated by Gα(i)(GTP).


Asunto(s)
Colorantes Fluorescentes/metabolismo , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades de Proteína/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteínas Luminiscentes/metabolismo , Ratones , Toxina del Pertussis/farmacología , Unión Proteica/efectos de los fármacos , Ratas , Coloración y Etiquetado , Volumetría , Xenopus
3.
J Biol Chem ; 285(9): 6179-85, 2010 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-20018875

RESUMEN

Stable complexes among G proteins and effectors are an emerging concept in cell signaling. The prototypical G betagamma effector G protein-activated K(+) channel (GIRK; Kir3) physically interacts with G betagamma but also with G alpha(i/o). Whether and how G alpha(i/o) subunits regulate GIRK in vivo is unclear. We studied triple interactions among GIRK subunits 1 and 2, G alpha(i3) and G betagamma. We used in vitro protein interaction assays and in vivo intramolecular Förster resonance energy transfer (i-FRET) between fluorophores attached to N and C termini of either GIRK1 or GIRK2 subunit. We demonstrate, for the first time, that G betagamma and G alpha(i3) distinctly and interdependently alter the conformational states of the heterotetrameric GIRK1/2 channel. Biochemical experiments show that G betagamma greatly enhances the binding of GIRK1 subunit to G alpha(i3)(GDP) and, unexpectedly, to G alpha(i3)(GTP). i-FRET showed that both G alpha(i3) and G betagamma induced distinct conformational changes in GIRK1 and GIRK2. Moreover, GIRK1 and GIRK2 subunits assumed unique, distinct conformations when coexpressed with a "constitutively active" G alpha(i3) mutant and G betagamma together. These conformations differ from those assumed by GIRK1 or GIRK2 after separate coexpression of either G alpha(i3) or G betagamma. Both biochemical and i-FRET data suggest that GIRK acts as the nucleator of the GIRK-G alpha-G betagamma signaling complex and mediates allosteric interactions between G alpha(i)(GTP) and G betagamma. Our findings imply that G alpha(i/o) and the G alpha(i) betagamma heterotrimer can regulate a G betagamma effector both before and after activation by neurotransmitters.


Asunto(s)
Canales de Potasio Rectificados Internamente Asociados a la Proteína G/química , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Animales , Electrofisiología , Transferencia Resonante de Energía de Fluorescencia , Complejos Multiproteicos , Oocitos , Unión Proteica , Conformación Proteica , Xenopus
4.
J Physiol ; 587(Pt 14): 3473-91, 2009 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-19470775

RESUMEN

G protein activated K+ channels (GIRK, Kir3) are switched on by direct binding of Gbetagamma following activation of Gi/o proteins via G protein-coupled receptors (GPCRs). Although Galphai subunits do not activate GIRKs, they interact with the channels and regulate the gating pattern of the neuronal heterotetrameric GIRK1/2 channel (composed of GIRK1 and GIRK2 subunits) expressed in Xenopus oocytes. Coexpressed Galphai3 decreases the basal activity (Ibasal) and increases the extent of activation by purified or coexpressed Gbegagamma. Here we show that this regulation is exerted by the 'inactive' GDP-bound Galphai3GDP and involves the formation of Galphai3betagamma heterotrimers, by a mechanism distinct from mere sequestration of Gbetagamma 'away' from the channel. The regulation of basal and Gbetagamma-evoked current was produced by the 'constitutively inactive' mutant of Galphai3, Galphai3G203A, which strongly binds Gbetagamma, but not by the 'constitutively active' mutant, Galphai3Q204L, or by Gbetagamma-scavenging proteins. Furthermore, regulation by Galphai3G203A was unique to the GIRK1 subunit; it was not observed in homomeric GIRK2 channels. In vitro protein interaction experiments showed that purified Gbetagamma enhanced the binding of Galphai3GDP to the cytosolic domain of GIRK1, but not GIRK2. Homomeric GIRK2 channels behaved as a 'classical' Gbetagamma effector, showing low Ibasal and strong Gbetagamma-dependent activation. Expression of Galphai3G203A did not affect either Ibasal or Gbetagamma-induced activation. In contrast, homomeric GIRK1* (a pore mutant able to form functional homomeric channels) exhibited large Ibasal and was poorly activated by Gbegagamma. Expression of Galphai3GDP reduced Ibasal and restored the ability of Gbetagamma to activate GIRK1*, like in GIRK1/2. Transferring the unique distal segment of the C terminus of GIRK1 to GIRK2 rendered the latter functionally similar to GIRK1*. These results demonstrate that GIRK1 containing channels are regulated by both Galphai3GDP and Gbetagamma, while GIRK2 is a Gbetagamma-effector insensitive to Galphai3GDP.


Asunto(s)
Canales de Potasio Rectificados Internamente Asociados a la Proteína G/química , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Proteínas de Unión al GTP Heterotriméricas/química , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Neuronas/metabolismo , Oocitos/fisiología , Transducción de Señal/fisiología , Animales , Sitios de Unión , Células Cultivadas , Regulación de la Expresión Génica/fisiología , Activación del Canal Iónico/fisiología , Unión Proteica , Subunidades de Proteína , Xenopus laevis
5.
J Biol Chem ; 279(17): 17260-8, 2004 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-14963032

RESUMEN

G protein-activated K(+) channels (GIRKs; Kir3) are activated by direct binding of Gbetagamma subunits released from heterotrimeric G proteins. In native tissues, only pertussis toxin-sensitive G proteins of the G(i/o) family, preferably Galpha(i3) and Galpha(i2), are donors of Gbetagamma for GIRK. How this specificity is achieved is not known. Here, using a pull-down method, we confirmed the presence of Galpha(i3-GDP) binding site in the N terminus of GIRK1 and identified novel binding sites in the N terminus of GIRK2 and in the C termini of GIRK1 and GIRK2. The non-hydrolyzable GTP analog, guanosine 5'-3-O-(thio)triphosphate, reduced the binding of Galpha(i3) by a factor of 2-4. Galpha(i1-GDP) bound to GIRK1 and GIRK2 much weaker than Galpha(i3-GDP). Titrated expression of components of signaling pathway in Xenopus oocytes and their activation by m2 muscarinic receptors revealed that G(i3) activates GIRK more efficiently than G(i1), as indicated by larger and faster agonist-evoked currents. Activation of GIRK by purified Gbetagamma in excised membrane patches was strongly augmented by coexpression of Galpha(i3) and less by Galpha(i1). Differences in physical interactions of GIRK with GDP-bound Galpha subunits, or Galphabetagamma heterotrimers, may dictate different extents of Galphabetagamma anchoring, influence the efficiency of GIRK activation by Gbetagamma, and play a role in determining signaling specificity.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Canales de Potasio de Rectificación Interna , Canales de Potasio/química , Proteínas Proto-Oncogénicas/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Membrana Celular/metabolismo , ADN Complementario/metabolismo , Canales de Potasio Rectificados Internamente Asociados a la Proteína G , Subunidad alfa de la Proteína de Unión al GTP Gi2 , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Glutatión Transferasa/metabolismo , Modelos Genéticos , Modelos Moleculares , Datos de Secuencia Molecular , Oocitos/metabolismo , Toxina del Pertussis/farmacología , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas/química , Receptor Muscarínico M2/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal , Factores de Tiempo , Xenopus laevis
6.
J Biol Chem ; 278(31): 29174-83, 2003 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-12743112

RESUMEN

G protein-activated K+ channels (Kir3 or GIRK) are activated by direct binding of Gbetagamma. The binding sites of Gbetagamma in the ubiquitous GIRK1 (Kir3.1) subunit have not been unequivocally charted, and in the neuronal GIRK2 (Kir3.2) subunit the binding of Gbetagamma has not been studied. We verified and extended the map of Gbetagamma-binding sites in GIRK1 by using two approaches: direct binding of Gbetagamma to fragments of GIRK subunits (pull down), and competition of these fragments with the Galphai1 subunit for binding to Gbetagamma. We also mapped the Gbetagamma-binding sites in GIRK2. In both subunits, the N terminus binds Gbetagamma. In the C terminus, the Gbetagamma-binding sites in the two subunits are not identical; GIRK1, but not GIRK2, has a previously unrecognized Gbetagamma-interacting segments in the first half of the C terminus. The main C-terminal Gbetagamma-binding segment found in both subunits is located approximately between amino acids 320 and 409 (by GIRK1 count). Mutation of C-terminal leucines 262 or 333 in GIRK1, recognized previously as crucial for Gbetagamma regulation of the channel, and of the corresponding leucines 273 and 344 in GIRK2 dramatically altered the properties of K+ currents via GIRK1/GIRK2 channels expressed in Xenopus oocytes but did not appreciably reduce the binding of Gbetagamma to the corresponding fusion proteins, indicating that these residues are mainly important for the regulation of Gbetagamma-induced changes in channel gating rather than Gbetagamma binding.


Asunto(s)
Subunidades beta de la Proteína de Unión al GTP , Subunidades gamma de la Proteína de Unión al GTP , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Canales de Potasio de Rectificación Interna , Canales de Potasio/química , Canales de Potasio/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Membrana Celular/química , Membrana Celular/fisiología , Conductividad Eléctrica , Femenino , Canales de Potasio Rectificados Internamente Asociados a la Proteína G , Expresión Génica , Glutatión Transferasa/genética , Activación del Canal Iónico , Ratones , Datos de Secuencia Molecular , Mutagénesis , Oocitos/metabolismo , Oocitos/ultraestructura , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Canales de Potasio/genética , Subunidades de Proteína/genética , Ratas , Proteínas Recombinantes de Fusión , Relación Estructura-Actividad , Transfección , Xenopus
7.
J Biol Chem ; 278(6): 3840-5, 2003 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-12488455

RESUMEN

G protein-gated K(+) channels (GIRK, or Kir3) are activated by the direct binding of Gbetagamma or of cytosolic Na(+). Na(+) activation is fast, Gbetagamma-independent, and probably via a direct, low affinity (EC(50), 30-40 mm) binding of Na(+) to the channel. Here we demonstrate that an increase in intracellular Na(+) concentration, [Na(+)](in), within the physiological range (5-20 mm), activates GIRK within minutes via an additional, slow mechanism. The slow activation is observed in GIRK mutants lacking the direct Na(+) effect. It is inhibited by a Gbetagamma scavenger, hence it is Gbetagamma-dependent; but it does not require GTP. We hypothesized that Na(+) elevates the cellular concentration of free Gbetagamma by promoting the dissociation of the Galphabetagamma heterotrimer into free Galpha(GDP) and Gbetagamma. Direct biochemical measurements showed that Na(+) causes a moderate decrease (approximately 2-fold) in the affinity of interaction between Galpha(GDP) and Gbetagamma. Furthermore, in accord with the predictions of our model, slow Na(+) activation was enhanced by mild coexpression of Galpha(i3). Our findings reveal a previously unknown mechanism of regulation of G proteins and demonstrate a novel Gbetagamma-dependent regulation of GIRK by Na(+). We propose that Na(+) may act as a regulatory factor, or even a second messenger, that regulates effectors via Gbetagamma.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Activación del Canal Iónico , Canales de Potasio/metabolismo , Sodio/metabolismo , Animales , Inmunohistoquímica , Xenopus
8.
Neuron ; 33(1): 87-99, 2002 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-11779482

RESUMEN

GIRK (Kir3) channels are activated by neurotransmitters coupled to G proteins, via a direct binding of G(beta)(gamma). The role of G(alpha) subunits in GIRK gating is elusive. Here we demonstrate that G(alpha)(i) is not only a donor of G(beta)(gamma) but also regulates GIRK gating. When overexpressed in Xenopus oocytes, GIRK channels show excessive basal activity and poor activation by agonist or G(beta)(gamma). Coexpression of G(alpha)(i3) or G(alpha)(i1) restores the correct gating parameters. G(alpha)(i) acts neither as a pure G(beta)(gamma) scavenger nor as an allosteric cofactor for G(beta)(gamma). It inhibits only the basal activity without interfering with G(beta)(gamma)-induced response. Thus, GIRK is regulated, in distinct ways, by both arms of the G protein. G(alpha)(i) probably acts in its GDP bound form, alone or as a part of G(alpha)(beta)(gamma) heterotrimer.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Neurotransmisores/metabolismo , Canales de Potasio de Rectificación Interna , Canales de Potasio/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transmisión Sináptica/fisiología , Animales , Sitios de Unión/efectos de los fármacos , Sitios de Unión/fisiología , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/fisiología , Femenino , Canales de Potasio Rectificados Internamente Asociados a la Proteína G , Subunidad alfa de la Proteína de Unión al GTP Gi2 , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Expresión Génica/fisiología , Guanosina 5'-O-(3-Tiotrifosfato)/farmacología , Inmunohistoquímica , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Oligorribonucleótidos Antisentido/farmacología , Oocitos , Estructura Terciaria de Proteína/genética , Proteínas Proto-Oncogénicas/genética , ARN Mensajero/farmacología , Receptor Muscarínico M2 , Receptores Muscarínicos/genética , Receptores Muscarínicos/metabolismo , Xenopus laevis
9.
J Biol Chem ; 277(5): 3419-23, 2002 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-11741969

RESUMEN

Human L-type voltage-dependent Ca(2+) channels (alpha(1C), or Ca(v)1.2) are up-regulated by protein kinase C (PKC) in native tissues, but in heterologous systems this modulation is absent. In rat and rabbit, alpha(1C) has two N-terminal (NT) isoforms, long and short, with variable initial segments of 46 and 16 amino acids, respectively. The initial 46 amino acids of the long-NT alpha(1C) are crucial for PKC regulation. However, only a short-NT human alpha(1C) is known. We assumed that a long-NT isoform of human alpha(1C) may exist. By homology screening of human genomic DNA, we identified a stretch (termed exon 1a) highly homologous to rabbit long-NT, separated from the next known exon of alpha(1C) (exon 1b, which encodes the alternative, short-NT) by an approximately 80 kb-long intron. The predicted 46-amino acid protein sequence is highly homologous to rabbit long-NT. Reverse transcriptase PCR showed the presence of exon 1a transcript in human cardiac RNA. Expression of human long-NT alpha(1C) in Xenopus oocytes produced Ca(2+) channel enhanced by a PKC activator, whereas the short-NT alpha(1C) was inhibited. The long-NT isoform may be the Ca(2+) channel enhanced by PKC-activating transmitters in human tissues.


Asunto(s)
Canales de Calcio Tipo L/genética , Isoformas de Proteínas/química , Proteína Quinasa C/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Canales de Calcio Tipo L/química , Canales de Calcio Tipo L/metabolismo , Cartilla de ADN , Regulación de la Expresión Génica , Variación Genética , Humanos , Cinética , Pulmón/metabolismo , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Isoformas de Proteínas/metabolismo , Conejos , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA