Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biotechnol Appl Biochem ; 68(4): 849-855, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32767384

RESUMEN

Immunotherapy based on adoptive transfer of genetically engineered T- and NK-cells is an area of active ongoing research and has proven highly efficacious for patients with certain B-cell malignancies. Use of NK cells and NK cell lines as carriers of chimeric antigen receptors (CARs) appears particularly promising, as this opens an opportunity for moving the therapy from autologous to the allogeneic (universal) format. This "off-the-shelf" approach is thought to significantly reduce the price of the treatment and make it available to many more patients in need. Yet, the efficacy of CAR-NK cells in vivo presently remains low, and boosting the activity of CAR NK cells via stronger tumor homing, resistance to tumor microenvironment, as well as greater cytotoxicity may translate into improved patient outcomes. Here, we established a derivative of a human NK cell line YT overexpressing a positive regulator of cytotoxicity, VAV1. Activity of YT-VAV1 cells obtained was assayed in vitro against several cancer cell lines and primary patient-derived cancer cells. YT-VAV1 cells outperform parental YT cells in terms of cytotoxicity.


Asunto(s)
Inmunidad Celular , Células Asesinas Naturales/inmunología , Neoplasias/inmunología , Neoplasias/terapia , Proteínas Proto-Oncogénicas c-vav/inmunología , Células CACO-2 , Células HEK293 , Humanos , Inmunoterapia , Células PC-3 , Proteínas Proto-Oncogénicas c-vav/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA