Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Chemosphere ; : 142296, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38729440

RESUMEN

While plant toxicity reduction remains the primary metric for judging the success of metal immobilization in soil, the suitability of microorganisms as universal indicators of its effectiveness in various contaminated soils remains a point of contention. This study assessed the sensitivity of microbial bioindicators in monitoring metal immobilization success in smelter-impacted soils. It compared plants and microorganisms as indicators of the efficiency of natural Fe-Mn nodules from the Gulf of Finland in immobilizing metals in soils contaminated by a Ni/Cu smelter, on the Kola Peninsula, Murmansk region, Russia. Perennial ryegrass (Lolium perenne) was grown on nodule-amended and control soils. Plant responses in the smelter-impacted soils proved to be sensitive and robust indicators of successful metal immobilization. However, microbial responses exhibited a more complex story. Despite the observed reductions in soluble metal concentrations, shoot metal contents in ryegrass, and significant improvements in plant growth, certain microbial bioindicators were unresponsive to metal immobilization success brought about by the addition of Fe-Mn nodules. Among microbial bioindicators studied, community-level physiological profiling, microbial biomass carbon, and basal respiration were sensitive indicators of metal immobilization success, whereas the number of saprotrophic, oligotrophic, and Fe-oxidizing bacteria and fungi, the biomass of bacteria and fungi, and enzymatic activity were less robust indicators. Interestingly, the correlations between different microbial responses measured were weak or even negative. Some microbial responses also exhibited negative correlations with plant biomass. These findings underscore the need for further research on comparative evaluations of plants and microorganisms as reliable indicators of metal immobilization efficacy in polluted environments.

2.
Heliyon ; 10(4): e26704, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38434044

RESUMEN

This work investigates the effect of varying the knitting structure and stitch length (SL) on various thermo-physiological and ergonomic comfort properties of the occupational graduated compression socks. Thermo-physiological comfort, ergonomic comfort and dimensional stability of theses stockings were analysed in a comparative manner. Obtained results were evaluated statistically using the technique of analysis of variance (ANOVA). A Fisher's multiple comparison test was commissioned to analyze the relationship between the alteration of stitch length (SL) on various utility functions and properties desired in the occupational compression socks. In order to examine whether the difference of stitch length is significant, p values were determined. Further the influence of knitting structures e.g., plain, 2 × 2 Rib and 1 × 3 Rib was analysed on the selected properties. The interactive effect of both stitch length (SL) and knitting structure was studied using statistical techniques. It was concluded that knitting structure has a stronger impact on thermo-physiological and ergonomic comfort properties. Results showed a significant variation in thermo-physiological and ergonomic comfort by altering stitch length by means of the statistical analysis. An innovative approach for the manufacturers has been developed for optimizing performance in compression stockings. The construction of the compression socks can thus be optimized in terms of constructional parameters to provide optimum comfort to the users.

3.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38396724

RESUMEN

The development of new approaches and drugs for effective control of the chronic and complicated forms of urogenital chlamydia caused by Chlamydia trachomatis, which is suspected to be one of the main causes of infertility in both women and men, is an urgent task. We used the technology of single-domain antibody (nanobody) generation both for the production of targeting anti-chlamydia molecules and for the subsequent acquisition of anti-idiotypic nanobodies (ai-Nbs) mimicking the structure of a given epitope of the pathogen (the epitope of the Chlamydial Type III Secretion System Needle Protein). In a mouse model, we have shown that the obtained ai-Nbs are able to induce a narrowly specific humoral immune response in the host, leading to the generation of intrinsic anti-Chlamydia antibodies, potentially therapeutic, specifically recognizing a given antigenic epitope of Chlamydia. The immune sera derived from mice immunized with ai-Nbs are able to suppress chlamydial infection in vitro. We hypothesize that the proposed method of the creation and use of ai-Nbs, which mimic and present to the host immune system exactly the desired region of the antigen, create a fundamentally new universal approach to generating molecular structures as a part of specific vaccine for the targeted induction of immune response, especially useful in cases where it is difficult to prepare an antigen preserving the desired epitope in its native conformation.


Asunto(s)
Infecciones por Chlamydia , Anticuerpos de Dominio Único , Humanos , Ratones , Animales , Femenino , Epítopos , Sistemas de Secreción Tipo III , Chlamydia trachomatis , Anticuerpos Antibacterianos
4.
Materials (Basel) ; 17(2)2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38255580

RESUMEN

Limited efficiency, lower durability, moisture absorbance, and pest/fungal/bacterial interaction/growth are the major issues relating to porous nonwovens used for acoustic and thermal insulation in buildings. This research investigated porous nonwoven textiles composed of recycled cotton waste (CW) fibers, with a specific emphasis on the above-mentioned problems using the treatment of silicon coating and formation of nanofibers via facile-solution processing. The findings revealed that the use of an economic and eco-friendly superhydrophobic (contact angle higher than 150°) modification of porous nonwovens with silicon nanofibers significantly enhanced their intrinsic characteristics. Notable improvements in their compactness/density and a substantial change in micro porosity were observed after a nanofiber network was formed on the nonwoven material. This optimized sample exhibited a superior performance in terms of stiffness, surpassing the untreated samples by 25-60%. Additionally, an significant enhancement in tear strength was observed, surpassing the untreated samples with an impressive margin of 70-90%. Moreover, the nanofibrous network of silicon fibers on cotton waste (CW) showed significant augmentation in heat resistance ranging from 7% to 24% and remarkable sound absorption capabilities. In terms of sound absorption, the samples exhibited a performance comparable to the commercial standard material and outperformed the untreated samples by 20% to 35%. Enhancing the micro-roughness of fabric via silicon nanofibers induced an efficient resistance to water absorption and led to the development of inherent self-cleaning characteristics. The antibacterial capabilities observed in the optimized sample were due to its superhydrophobic nature. These characteristics suggest that the proposed nano fiber-treated nonwoven fabric is ideal for multifunctional applications, having features like enhanced moisture resistance, pest resistance, thermal insulation, and sound absorption which are essential for wall covers in housing.

5.
Materials (Basel) ; 16(23)2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38068090

RESUMEN

This paper investigates the development of fabric materials using several blends of inherently fire-resistant (FR) fibers and various knitted structures. The samples are evaluated with respect to their performance and comfort-related properties. Inherently fire-resistant fibers, e.g., Nomex, Protex, carbon and FR viscose, were used to develop different structures of knitted fabrics. Cross-miss, cross-relief, and vertical tubular structures were knitted by using optimum fiber blend proportions and combinations of stitches. Several important aspects of the fabric samples were investigated, e.g., their physical, mechanical and serviceability performance. Thermo-physiological and tactile/touch-related comfort properties were evaluated in addition to flame resistance performance. An analysis of mechanical performance indicated that the knitted structure has a significant influence on the tensile strength, bursting strength and pilling resistance. The cross-relief structure proved to be the strongest followed by the cross-miss and vertical tubular structures. The FR station suits made from 70:30 Protex/Nomex exhibited the best combination of tensile and bursting strength; therefore, this material is recommended for making a stable and durable station suit. Interestingly, it was also concluded from the experimental study that knitted samples with a cross-relief structure exhibit the best fire-resistance performance. Fiber blends of 70:30 Protex/Nomex and 70:30 Nomex/carbon were found to be optimum in terms of overall performance. The best flame resistance was achieved with Nomex:carbon fiber blends. These results were confirmed with vertical flammability tests, TGA, DTGA and cone calorimetry analysis. The optimization of blend composition as well as knitting structure/architecture is a crucial finding toward designing the best FR station suit in terms of mechanical, dimensional, thermal, thermo-physiological and flame resistance performance.

6.
Nanomaterials (Basel) ; 13(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38063705

RESUMEN

The phase composition and comparison of iron-based catalysts used for the synthesis of carbon nanotubes were investigated. This work reflects typical catalyst conditions and their evolution during the growth of carbon nanotubes. The preparation of carbon nanotubes was carried out by chemical vapour deposition at temperatures between 800 and 1100 °C. Ferrocene or zero-valent iron nanoparticles were used as "catalysts", and toluene, ferrocene and the ferrocene-toluene solution played the role of carbon precursors, respectively. The phase composition of the prepared product was studied by Mössbauer spectroscopy and X-ray powder diffraction. Mössbauer analysis was particularly useful for samples with a low content of the nanoparticle form of the catalyst. The composition of the prepared samples differed depending on the synthesis temperature, catalyst and precursor. Phase analysis revealed the presence of α-Fe and Fe3C in all samples. In addition, γ-Fe and iron oxides were identified under certain conditions. Scanning and transmission electron microscopy confirmed the carbon nanotube/nanofibre-like morphology and the presence of iron species.

7.
Toxics ; 11(12)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38133358

RESUMEN

The possibility of plants growing on serpentine soils and the ability of serpentine minerals to accumulate significant amounts of metals was the basis for developing a method for using serpentine-containing materials to restore vegetation in areas with a high level of metal pollution. Serpentine-containing products obtained from phlogopite mining overburden (Kovdor, Murmansk region, Russia) with and without thermal activation were used in a field experiment on the remediation of industrially polluted peat soil. According to the geochemical mobility of the components, one of four fractions was allocated depending on the acidic (HCl) concentration of the solution used for the material treatment: readily mobile (0.001 mol/L), mobile (0.01 mol/L), potentially mobile (0.1 mol/L), and acid-soluble (1.0 mol/L). This study showed that the addition of serpentinites to peat soil changed the fraction composition. The most significant changes were noted for serpentinite components such as Ca and Mg: their concentrations increased 2-3 times even in the smallest portion of serpentine material. On the contrary, the contents of metals in the readily mobile fraction decreased 3-18, 3-23, 5-26, and 2-42 times for Cu, Ni, Fe, and Al, respectively. The main factor causing the decrease in metal mobility was the pH rise due to the release of Ca and Mg compounds into the soil solution. This study showed that the addition of serpentine-containing material at 25 vol.% to peat soil was sufficient to create a geochemical barrier with a stable-functioning vegetation cover. All serpentine-containing materials are recommended for the remediation of large industrially polluted areas.

8.
Toxics ; 11(11)2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37999550

RESUMEN

Mining activities create disturbed and polluted areas in which revegetation is complicated, especially in northern areas. For the first time, the state of the ecosystems in the impact zone of tailings formed during the processing of rare earth element deposits in the Subarctic have been studied. This work aimed to reveal aspects of accumulation and translocation of trace and biogenic elements in plants (Avenella flexuosa (L.) Drejer, Salix sp., and Betula pubescens Ehrh.) that are predominantly found in primary ecosystems on the tailings of loparite ores processing. The chemical composition of soil, initial and washed plant samples was analyzed using inductively coupled plasma mass spectrometry. Factor analysis revealed that anthropogenic and biogenic factors affected the plants' chemical composition. A deficiency of nutrients (Ca, Mg, Mn) in plants growing on tailings was found. The absorption of REE (Ce, La, Sm, Nd) by A. flexuosa roots correlated with the soil content of these elements and was maximal in the hydromorphic, which had a high content of organic matter. The content of these elements in leaves in the same site was minimal; the coefficient of REE bioaccumulation was two orders of magnitude less than in the other two sites. The high efficiency of dust capturing and the low translocation coefficient of trace elements allow us to advise A. flexuosa for remediation of REE-contained tailings and soils.

9.
Biochemistry (Mosc) ; 88(8): 1105-1115, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37758310

RESUMEN

It is known that the saturation ratio of transferrin (Tf) with iron in human blood is an important clinical parameter. Specific antibodies can be used to analyze subtle changes in the relative abundance of different forms of transferrin potentially associated with a pathological process. Recently, the authors of this study were able to obtain and characterize highly specific single-domain antibodies (nanobodies) that predominantly recognize the iron-saturated (holo-Tf) or iron-unsaturated (apo-Tf) form of transferrin. In this work, under conditions closer to physiological than in the previous experiments, we further demonstrated that these unique nanobodies have extremely high differential binding specificity for different forms of Tf in different human biological fluids. Using these nanobodies, we were able to analyze for the first time relative abundance of the transferrin forms in urine samples from the patients with bladder cancer (BC). We have shown that increase in the concentration of total Tf in the urine samples normalized for creatinine is associated with the degree of progress and growth of malignancy of BC. In the samples of healthy donors and in the early stages of BC (G1), Tf is detected in much smaller amounts (compared to the later stages) and only with additional concentration of the studied samples. For most of the studied urine samples from the BC patients, it is expected (as previously shown in the case of Tf in the blood of terminal ovarian cancer patients) that the concentration of apo-Tf is clearly higher than holo-Tf, especially in the case of the most advanced muscle-invasive BC. It was a surprise for us that approximately equal amounts of apo-Tf and holo-Tf were found in the urine samples of some patients with BC. We hypothesized that the holo-Tf fraction in this case could be largely represented by the "secondary complexes" formed by apo-Tf in combination with ions other than Fe3+, which accumulate in the urine of some cancer patients and are able to bind to apo-Tf, changing its conformation towards holo-Tf. By using inductively coupled plasma mass spectroscopy (ICP-MS), we obtained first results confirming our hypothesis. Preparation of the holo-Tf in these urine samples was found to be highly enriched in zinc and nickel. Also, relative enrichment in cadmium has been observed in this preparation, but at much lower concentrations. The obtained data indicate that the used nanobody, while recognizing predominantly the iron-saturated form of transferrin (holo-Tf), is also capable of binding transferrin in association with other metal ions that are different from iron. This ability could potentially open up new possibilities for investigation of relative abundance of various metal ions in association with transferrin in human biological fluids in normal and pathological conditions.

10.
Biomolecules ; 13(9)2023 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-37759713

RESUMEN

Pollen germination in vivo on wet stigmas is assisted by the receptive fluid-stigma exudate. Its exact composition is still unknown because only some components have been studied. For the first time, hormonal screening was carried out, and the fatty acid (FA) composition of lipid-rich (Nicotiana tabacum) and sugar-rich (Lilium longiflorum) exudates was studied. Screening of exudate for the presence of plant hormones using HPLC-MS revealed abscisic acid (ABA) in tobacco stigma exudate at the two stages of development, at pre-maturity and in mature stigmas awaiting pollination, increasing at the fertile stage. To assess physiological significance of ABA on stigma, we tested the effect of this hormone in vitro. ABA concentration found in the exudate strongly stimulated the germination of tobacco pollen, a lower concentration had a weaker effect, increasing the concentration did not increase the effect. GC-MS analysis showed that both types of exudate are characterized by a predominance of saturated FAs. The lipids of tobacco stigma exudate contain significantly more myristic, oleic, and linoleic acids, resulting in a higher unsaturation index relative to lily stigma exudate lipids. The latter, in turn, contain more 14-hexadecenoic and arachidic acids. Both exudates were found to contain significant amounts of squalene. The possible involvement of saturated FAs, ABA, and squalene in various exudate functions, as well as their potential relationship on the stigma, is discussed.


Asunto(s)
Lilium , Reguladores del Crecimiento de las Plantas , Nicotiana , Ácidos Grasos , Escualeno , Ácido Abscísico , Exudados y Transudados
11.
Metabolites ; 13(9)2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37755274

RESUMEN

Augmented knowledge of plant responses upon application of stress could help improve our understanding of plant tolerance under abiotic stress conditions. Histone acetylation plays an important role in gene expression regulation during plant growth and development and in the response of plants to abiotic stress. The current study examines the level of transcripts and free metabolite content in transgenic Arabidopsis thaliana plants expressing a gene encoding histone acetyltransferase from Medicago truncatula (MtHAC1) after its heterologous expression. Stable transgenic plants with HAC1 gain and loss of function were constructed, and their T5 generation was used. Transgenic lines with HAC1-modified expression showed a deviation in root growth dynamics and leaf area compared to the wild-type control. Transcriptional profiles were evaluated after the application of salinity stress caused by 150 mM NaCl at four different time points (0, 24, 48, and 72 h) in treated and non-treated transgenic and control plants. The content and quantity of free metabolites-amino acids, mono- and dicarbohydrates, organic acids, and fatty acids-were assessed at time points 0 h and 72 h in treated and non-treated transgenic and control plants. The obtained transcript profiles of HAC1 in transgenic plants with modified expression and control were assessed after application of cold stress (low temperature, 4 °C).

12.
Plant Physiol Biochem ; 203: 108044, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37776673

RESUMEN

Marchantia polymorpha is a convenient model for studying light of different spectral compositions on various physiological and biochemical processes because its photoreceptor system is vastly simplified. The influence of red light (RL, 660 nm), far-red light (FRL, 730 nm), blue light (BL, 450 nm), and green light (GL, 525 nm) compared to white light (high-pressure sodium light (HPSL), white LEDs (WL 450 + 580 nm) and white fluorescent light (WFL) on photosynthetic and transpiration rates, photosystem II (PSII) activity, photomorphogenesis, and the expression of light and hormonal signaling genes was studied. The ultrastructure of the chloroplasts in different tissues of the gametophyte M. polymorpha was examined. FRL led to the formation of agranal chloroplasts (in the epidermis and the chlorenchyma) with a high starch content (in the parenchyma), which led to a reduced intensity of photosynthesis. BL increased the transcription of genes for the biosynthesis of secondary metabolites - chalcone synthase (CHS), cellulose synthase (CELL), and L-ascorbate peroxidase (APOX3), which is consistent with the increased activity of low-molecular weight antioxidants. FRL increased the expression of phytochrome apoprotein (PHY) and cytokinin oxidase (CYTox) genes, but the expression of the phytochrome interacting factor (PIF) gene decreased, which was accompanied by a significant change in gametophyte morphology. Analysis of crosstalk gene expression, and changes in morphology and photosynthetic activity was carried out.

13.
Nat Commun ; 14(1): 5737, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37714836

RESUMEN

Local deformation of atomically thin van der Waals materials provides a powerful approach to create site-controlled chip-compatible single-photon emitters (SPEs). However, the microscopic mechanisms underlying the formation of such strain-induced SPEs are still not fully clear, which hinders further efforts in their deterministic integration with nanophotonic structures for developing practical on-chip sources of quantum light. Here we investigate SPEs with single-photon purity up to 98% created in monolayer WSe2 via nanoindentation. Using photoluminescence imaging in combination with atomic force microscopy, we locate single-photon emitting sites on a deep sub-wavelength spatial scale and reconstruct the details of the surrounding local strain potential. The obtained results suggest that the origin of the observed single-photon emission is likely related to strain-induced spectral shift of dark excitonic states and their hybridization with localized states of individual defects.

14.
Sci Total Environ ; 903: 166554, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37633372

RESUMEN

Waste management has been a chronic environmental challenge in Nigeria, coupled with declining economic performance due to energy crises. This study was designed to estimate electricity potential of sewage sludge to meet the 2030 Renewable Energy target. However, there was a need to fill the gap in data related to wastewater management in Nigeria. The wastewater and sludge generated from households were evaluated based on data on population, access to water, and coverage of sewer networks. Consequently, the technical and economic feasibility of electricity generation was assessed using Anaerobic Digestion (AD)1 and Incineration (INC)2 scenarios. The core results found that North Central had the highest potential for wastewater generation (142.8-403.6 billion litres/yr) and collection (8.3-37.5 billion litres/yr) over 20 years. However, the South East had the highest average sewer collection rate of 9.08 %. The AD technology was the most technically viable, with a maximum generation of 6.8 GWh/yr in the North Central. In comparison, the INC outperformed AD in most of the financial viability indicators considered viz-a-viz: Life Cycle Cost (LCC),3 Net Present Value (NPV),4 Pay Back Period (PBP),5 Internal Rate of Return (IRR),6 Levelized Cost of Energy (LCOE).7 The AD had a higher NPV of 16.3-69.58 million USD and a shorter PBP of about 4 years. The INC had a lower LCC of 0.1-0.34 million USD, LCOE of 0.046-0.094 USD/kWh, and a higher IRR of 19.3-25 %. Additionally, the sensitivity of NPV and INC to changes in economic factors would be noteworthy for investors and policymakers. Ultimately, the choice of technology should reflect the fiscal goal and priorities of a project.

15.
J Pers Med ; 13(7)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37511774

RESUMEN

Circulating serum miRNA are increasingly used as biomarkers and potential treatment targets in several clinical scenarios, including cardiovascular diseases. However, the current data on circulating miRNA in thoracic aorta aneurism (TAA) patients are inconclusive. The aim of the present study is to compare the levels of several circulating miRNA in patients with degenerative TAA, coronary artery disease (CAD), and controls for special profile identification. We have identified several candidates for the role of new biomarkers: miR-143-3p, miR-181-5p, miR-126-3p, miR-126-5p, miR-145-5p, miR-150-5p, and miR-195-5p. MATERIALS AND METHODS: Serum samples of 100 patients were analyzed, including 388 TAA patients scheduled for elective surgery, 67 patients with stable CAD and 17 controls, were used for miRNA isolation and identification. RESULTS: More specific for TAA with very high predictive ability in ROC analysis was an increase in the levels of miR-21-5p, miR-29b-5p, miR-126-5p/-3p, miR-181b-5p, and miR-92a-3p, with the latter microRNA being investigated as a novel potential marker of TAA for the first time. CONCLUSION: TAA and CAD patients demonstrated a significant increase in the levels of circulating miR-126-5p/-3p, miR-181b-5p, and miR-29b-3p. More specific for TAA with very high predictive ability in ROC analysis was an increase in the levels of miR-21-5p, -29b-5p, -126-5p/-3p, 181b-5p, and -92a-3p, with the latter microRNA being investigated as a potential marker of TAA for the first time.

16.
Int J Mol Sci ; 24(11)2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37298668

RESUMEN

A pollen grain is a unique haploid organism characterized by a special composition and structure. The pollen of angiosperms and gymnosperms germinate in fundamentally similar ways, but the latter also have important features, including slow growth rates and lower dependence on female tissues. These features are, to some extent, due to the properties of pollen lipids, which perform a number of functions during germination. Here, we compared the absolute content and the fatty acid (FA) composition of pollen lipids of two species of flowering plants and spruce using GC-MS. The FA composition of spruce pollen differed significantly, including the predominance of saturated and monoene FAs, and a high proportion of very-long-chain FAs (VLCFAs). Significant differences between FAs from integumentary lipids (pollen coat (PC)) and lipids of gametophyte cells were found for lily and tobacco, including a very low unsaturation index of the PC. The proportion of VLCFAs in the integument was several times higher than in gametophyte cells. We found that the absolute content of lipids in lily pollen is almost three times higher than in tobacco and spruce pollen. For the first time, changes in the FA composition were analyzed during pollen germination in gymnosperms and angiosperms. The stimulating effect of H2O2 on spruce germination also led to noticeable changes in the FA content and composition of growing pollen. For tobacco in control and test samples, the FA composition was stable.


Asunto(s)
Ácidos Grasos , Magnoliopsida , Cycadopsida , Peróxido de Hidrógeno , Polen , Nicotiana , Lípidos
17.
Int J Mol Sci ; 24(9)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37175507

RESUMEN

The aim of the study was directed at studying the sex-specific features of the correlation between genome-wide association studies (GWAS)-noticeable polymorphisms and hypertension (HTN). In two groups of European subjects of Russia (n = 1405 in total), such as men (n = 821 in total: n = 564 HTN, n = 257 control) and women (n = 584 in total: n = 375 HTN, n = 209 control), the distribution of ten specially selected polymorphisms (they have confirmed associations of GWAS level with blood pressure (BP) parameters and/or HTN in Europeans) has been considered. The list of studied loci was as follows: (PLCE1) rs932764 A > G, (AC026703.1) rs1173771 G > A, (CERS5) rs7302981 G > A, (HFE) rs1799945 C > G, (OBFC1) rs4387287 C > A, (BAG6) rs805303 G > A, (RGL3) rs167479 T > G, (ARHGAP42) rs633185 C > G, (TBX2) rs8068318 T > C, and (ATP2B1) rs2681472 A > G. The contribution of individual loci and their inter-locus interactions to the HTN susceptibility with bioinformatic interpretation of associative links was evaluated separately in men's and women's cohorts. The men-women differences in involvement in the disease of the BP/HTN-associated GWAS SNPs were detected. Among women, the HTN risk has been associated with HFE rs1799945 C > G (genotype GG was risky; ORGG = 11.15 ppermGG = 0.014) and inter-locus interactions of all 10 examined SNPs as part of 26 intergenic interactions models. In men, the polymorphism BAG6 rs805303 G > A (genotype AA was protective; ORAA = 0.30 ppermAA = 0.0008) and inter-SNPs interactions of eight loci in only seven models have been founded as HTN-correlated. HTN-linked loci and strongly linked SNPs were characterized by pronounced polyvector functionality in both men and women, but at the same time, signaling pathways of HTN-linked genes/SNPs in women and men were similar and were represented mainly by immune mechanisms. As a result, the present study has demonstrated a more pronounced contribution of BP/HTN-associated GWAS SNPs to the HTN susceptibility (due to weightier intergenic interactions) in European women than in men.


Asunto(s)
Estudio de Asociación del Genoma Completo , Hipertensión , Masculino , Humanos , Femenino , Pueblo Europeo , Genotipo , Hipertensión/genética , Polimorfismo de Nucleótido Simple , Predisposición Genética a la Enfermedad , Chaperonas Moleculares/genética , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética
18.
Int J Mol Sci ; 24(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37176017

RESUMEN

The aim of this case-control replicative study was to investigate the link between GWAS-impact for arterial hypertension (AH) and/or blood pressure (BP) gene polymorphisms and AH risk in Russian subjects (Caucasian population of Central Russia). AH (n = 939) and control (n = 466) cohorts were examined for ten GWAS AH/BP risk loci. The genotypes/alleles of these SNP and their combinations (SNP-SNP interactions) were tested for their association with the AH development using a logistic regression statistical procedure. The genotype GG of the SNP rs1799945 (C/G) HFE was strongly linked with an increased AH risk (ORrecGG = 2.53; 95%CIrecGG1.03-6.23; ppermGG = 0.045). The seven SNPs such as rs1173771 (G/A) AC026703.1, rs1799945 (C/G) HFE, rs805303 (G/A) BAG6, rs932764 (A/G) PLCE1, rs4387287 (C/A) OBFC1, rs7302981 (G/A) CERS5, rs167479 (T/G) RGL3, out of ten regarded loci, were related with AH within eight SNP-SNP interaction models (<0.001 ≤ pperm-interaction ≤ 0.047). Three polymorphisms such as rs8068318 (T/C) TBX2, rs633185 (C/G) ARHGAP42, and rs2681472 (A/G) ATP2B1 were not linked with AH. The pairwise rs805303 (G/A) BAG6-rs7302981 (G/A) CERS5 combination was a priority in determining the susceptibility to AH (included in six out of eight SNP-SNP interaction models [75%] and described 0.82% AH entropy). AH-associated variants are conjecturally functional for 101 genes involved in processes related to the immune system (major histocompatibility complex protein, processing/presentation of antigens, immune system process regulation, etc.). In conclusion, the rs1799945 polymorphism of the HFE gene and intergenic interactions of BAG6, CERS5, AC026703.1, HFE, PLCE1, OBFC1, RGL3 have been linked with AH risky in the Caucasian population of Central Russia.


Asunto(s)
Estudio de Asociación del Genoma Completo , Hipertensión , Humanos , Proteína de la Hemocromatosis/genética , Polimorfismo de Nucleótido Simple , Genotipo , Federación de Rusia , Hipertensión/epidemiología , Hipertensión/genética , Estudios de Casos y Controles , Predisposición Genética a la Enfermedad , Chaperonas Moleculares/genética , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética
19.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37047346

RESUMEN

Life expectancy and age-related diseases burden increased significantly over the past few decades. Age-related conditions are commonly discussed in a very limited paradigm of depleted cellular proliferation and maturation with exponential accumulation of senescent cells. However, most recent evidence showed that the majority of age-associated ailments, i.e., diabetes mellitus, cardiovascular diseases and neurodegeneration. These diseases are closely associated with tissue nonspecific inflammation triggered and controlled by mesenchymal stromal cell secretion. Mesenchymal stromal cells (MSCs) are known as the most common type of cells for therapeutic approaches in clinical practice. Side effects and complications of MSC-based treatments increased interest in the MSCs secretome as an alternative concept for validation tests in regenerative medicine. The most recent data also proposed it as an ideal tool for cell-free regenerative therapy and tissue engineering. However, senescent MSCs secretome was shown to hold the role of 'key-driver' in inflammaging. We aimed to review the immunomodulatory effects of the MSCs-secretome during cell senescence and provide eventual insight into the interpretation of its beneficial biological actions in inflammaging-associated diseases.


Asunto(s)
Células Madre Mesenquimatosas , Humanos , Células Madre Mesenquimatosas/metabolismo , Senescencia Celular , Medicina Regenerativa , Inflamación/metabolismo , Tratamiento Basado en Trasplante de Células y Tejidos
20.
Light Sci Appl ; 12(1): 59, 2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36864035

RESUMEN

Emerging photo-induced excitonic processes in transition metal dichalcogenide (TMD) heterobilayers, e.g., interplay of intra- and inter-layer excitons and conversion of excitons to trions, allow new opportunities for ultrathin hybrid photonic devices. However, with the associated large degree of spatial heterogeneity, understanding and controlling their complex competing interactions in TMD heterobilayers at the nanoscale remains a challenge. Here, we present an all-round dynamic control of interlayer-excitons and -trions in a WSe2/Mo0.5 W0.5 Se2 heterobilayer using multifunctional tip-enhanced photoluminescence (TEPL) spectroscopy with <20 nm spatial resolution. Specifically, we demonstrate the bandgap tunable interlayer excitons and the dynamic interconversion between interlayer-trions and -excitons, through the combinational tip-induced engineering of GPa-scale pressure and plasmonic hot electron injection, with simultaneous spectroscopic TEPL measurements. This unique nano-opto-electro-mechanical control approach provides new strategies for developing versatile nano-excitonic/trionic devices using TMD heterobilayers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...