Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Structure ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38579707

RESUMEN

Human mixed lineage leukemia 4 (MLL4), also known as KMT2D, regulates cell type specific transcriptional programs through enhancer activation. Along with the catalytic methyltransferase domain, MLL4 contains seven less characterized plant homeodomain (PHD) fingers. Here, we report that the sixth PHD finger of MLL4 (MLL4PHD6) binds to the hydrophobic motif of ten-eleven translocation 3 (TET3), a dioxygenase that converts methylated cytosine into oxidized derivatives. The solution NMR structure of the TET3-MLL4PHD6 complex and binding assays show that, like histone H4 tail, TET3 occupies the hydrophobic site of MLL4PHD6, and that this interaction is conserved in the seventh PHD finger of homologous MLL3 (MLL3PHD7). Analysis of genomic localization of endogenous MLL4 and ectopically expressed TET3 in mouse embryonic stem cells reveals a high degree overlap on active enhancers and suggests a potential functional relationship of MLL4 and TET3.

2.
Nat Commun ; 14(1): 5636, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704626

RESUMEN

The virus life cycle depends on host-virus protein-protein interactions, which often involve a disordered protein region binding to a folded protein domain. Here, we used proteomic peptide phage display (ProP-PD) to identify peptides from the intrinsically disordered regions of the human proteome that bind to folded protein domains encoded by the SARS-CoV-2 genome. Eleven folded domains of SARS-CoV-2 proteins were found to bind 281 peptides from human proteins, and affinities of 31 interactions involving eight SARS-CoV-2 protein domains were determined (KD ∼ 7-300 µM). Key specificity residues of the peptides were established for six of the interactions. Two of the peptides, binding Nsp9 and Nsp16, respectively, inhibited viral replication. Our findings demonstrate how high-throughput peptide binding screens simultaneously identify potential host-virus interactions and peptides with antiviral properties. Furthermore, the high number of low-affinity interactions suggest that overexpression of viral proteins during infection may perturb multiple cellular pathways.


Asunto(s)
Antivirales , COVID-19 , Humanos , Antivirales/farmacología , Dominios Proteicos , SARS-CoV-2 , Ligandos , Proteómica , Péptidos/farmacología
3.
Nat Chem Biol ; 19(11): 1423-1431, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37653170

RESUMEN

The modification of intracellular proteins with O-linked ß-N-acetylglucosamine (O-GlcNAc) moieties is a highly dynamic process that spatiotemporally regulates nearly every important cellular program. Despite its significance, little is known about the substrate recognition and regulation modes of O-GlcNAc transferase (OGT), the primary enzyme responsible for O-GlcNAc addition. In this study, we identified the intervening domain (Int-D), a poorly understood protein fold found only in metazoan OGTs, as a specific regulator of OGT protein-protein interactions and substrate modification. Using proteomic peptide phage display (ProP-PD) coupled with structural, biochemical and cellular characterizations, we discovered a strongly enriched peptide motif, employed by the Int-D to facilitate specific O-GlcNAcylation. We further show that disruption of Int-D binding dysregulates important cellular programs, including response to nutrient deprivation and glucose metabolism. These findings illustrate a mode of OGT substrate recognition and offer key insights into the biological roles of this unique domain.


Asunto(s)
Proteínas , Proteómica , Animales , Acetilglucosamina/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Péptidos
4.
Biochemistry ; 62(11): 1594-1607, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37224425

RESUMEN

The ERM (ezrin, radixin, and moesin) family of proteins and the related protein merlin participate in scaffolding and signaling events at the cell cortex. The proteins share an N-terminal FERM [band four-point-one (4.1) ERM] domain composed of three subdomains (F1, F2, and F3) with binding sites for short linear peptide motifs. By screening the FERM domains of the ERMs and merlin against a phage library that displays peptides representing the intrinsically disordered regions of the human proteome, we identified a large number of novel ligands. We determined the affinities for the ERM and merlin FERM domains interacting with 18 peptides and validated interactions with full-length proteins through pull-down experiments. The majority of the peptides contained an apparent Yx[FILV] motif; others show alternative motifs. We defined distinct binding sites for two types of similar but distinct binding motifs (YxV and FYDF) using a combination of Rosetta FlexPepDock computational peptide docking protocols and mutational analysis. We provide a detailed molecular understanding of how the two types of peptides with distinct motifs bind to different sites on the moesin FERM phosphotyrosine binding-like subdomain and uncover interdependencies between the different types of ligands. The study expands the motif-based interactomes of the ERMs and merlin and suggests that the FERM domain acts as a switchable interaction hub.


Asunto(s)
Dominios FERM , Neurofibromina 2 , Humanos , Neurofibromina 2/genética , Neurofibromina 2/química , Neurofibromina 2/metabolismo , Ligandos , Estructura Terciaria de Proteína , Péptidos
5.
Mol Syst Biol ; 19(7): e11164, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37219487

RESUMEN

Phosphorylation is a ubiquitous post-translation modification that regulates protein function by promoting, inhibiting or modulating protein-protein interactions. Hundreds of thousands of phosphosites have been identified but the vast majority have not been functionally characterised and it remains a challenge to decipher phosphorylation events modulating interactions. We generated a phosphomimetic proteomic peptide-phage display library to screen for phosphosites that modulate short linear motif-based interactions. The peptidome covers ~13,500 phospho-serine/threonine sites found in the intrinsically disordered regions of the human proteome. Each phosphosite is represented as wild-type and phosphomimetic variant. We screened 71 protein domains to identify 248 phosphosites that modulate motif-mediated interactions. Affinity measurements confirmed the phospho-modulation of 14 out of 18 tested interactions. We performed a detailed follow-up on a phospho-dependent interaction between clathrin and the mitotic spindle protein hepatoma-upregulated protein (HURP), demonstrating the essentiality of the phospho-dependency to the mitotic function of HURP. Structural characterisation of the clathrin-HURP complex elucidated the molecular basis for the phospho-dependency. Our work showcases the power of phosphomimetic ProP-PD to discover novel phospho-modulated interactions required for cellular function.


Asunto(s)
Biblioteca de Péptidos , Proteómica , Humanos , Fosforilación , Clatrina
6.
Nat Commun ; 14(1): 2409, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37100772

RESUMEN

Viruses mimic host short linear motifs (SLiMs) to hijack and deregulate cellular functions. Studies of motif-mediated interactions therefore provide insight into virus-host dependencies, and reveal targets for therapeutic intervention. Here, we describe the pan-viral discovery of 1712 SLiM-based virus-host interactions using a phage peptidome tiling the intrinsically disordered protein regions of 229 RNA viruses. We find mimicry of host SLiMs to be a ubiquitous viral strategy, reveal novel host proteins hijacked by viruses, and identify cellular pathways frequently deregulated by viral motif mimicry. Using structural and biophysical analyses, we show that viral mimicry-based interactions have similar binding strength and bound conformations as endogenous interactions. Finally, we establish polyadenylate-binding protein 1 as a potential target for broad-spectrum antiviral agent development. Our platform enables rapid discovery of mechanisms of viral interference and the identification of potential therapeutic targets which can aid in combating future epidemics and pandemics.


Asunto(s)
Bacteriófagos , Proteínas Intrínsecamente Desordenadas , Virus , Bacteriófagos/genética , Virus/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Secuencias de Aminoácidos , Interacciones Huésped-Patógeno/genética
7.
Curr Opin Struct Biol ; 80: 102593, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37099901

RESUMEN

Short linear motifs (SLiMs) are a unique and ubiquitous class of protein interaction modules that perform key regulatory functions and drive dynamic complex formation. For decades, interactions mediated by SLiMs have accumulated through detailed low-throughput experiments. Recent methodological advances have opened this previously underexplored area of the human interactome to high-throughput protein-protein interaction discovery. In this article, we discuss that SLiM-based interactions represent a significant blind spot in the current interactomics data, introduce the key methods that are illuminating the elusive SLiM-mediated interactome of the human cell on a large scale, and discuss the implications for the field.


Asunto(s)
Proteoma , Humanos , Secuencias de Aminoácidos
8.
Res Sq ; 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36778302

RESUMEN

The modification of intracellular proteins with O-linked ß- N -acetylglucosamine (O-GlcNAc) moieties is a highly dynamic process that spatiotemporally regulates nearly every important cellular program. Despite its significance, little is known about the substrate recognition and regulation modes of O-GlcNAc transferase (OGT), the primary enzyme responsible for O-GlcNAc addition. In this study, we have identified the intervening domain (Int-D), a poorly understood protein fold found only in metazoan OGTs, as a specific regulator of OGT protein-protein interactions and substrate modification. Utilizing an innovative proteomic peptide phage display (ProP-PD) coupled with structural, biochemical, and cellular characterizations, we discovered a novel peptide motif, employed by the Int-D to facilitate specific O-GlcNAcylation. We further show that disruption of Int-D binding dysregulates important cellular programs including nutrient stress response and glucose metabolism. These findings illustrate a novel mode of OGT substrate recognition and offer the first insights into the biological roles of this unique domain.

9.
Trends Biochem Sci ; 48(5): 420-427, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36623987

RESUMEN

Short linear motif (SLiM)-mediated interactions offer a unique strategy for viral intervention due to their compact interfaces, ease of convergent evolution, and key functional roles. Consequently, many viruses extensively mimic host SLiMs to hijack or deregulate cellular pathways and the same motif-binding pocket is often targeted by numerous unrelated viruses. A toolkit of therapeutics targeting commonly mimicked SLiMs could provide prophylactic and therapeutic broad-spectrum antivirals and vastly improve our ability to treat ongoing and future viral outbreaks. In this opinion article, we discuss the therapeutic relevance of SLiMs, advocating their suitability as targets for broad-spectrum antiviral inhibitors.


Asunto(s)
Secuencias de Aminoácidos , Antivirales , Antivirales/farmacología
10.
Anal Biochem ; 663: 115017, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36526023

RESUMEN

Low affinity and transient protein-protein interactions, such as short linear motif (SLiM)-based interactions, require dedicated experimental tools for discovery and validation. Here, we evaluated and compared biotinylated peptide pulldown and protein interaction screen on peptide matrix (PRISMA) coupled to mass-spectrometry (MS) using a set of peptides containing interaction motifs. Eight different peptide sequences that engage in interactions with three distinct protein domains (KEAP1 Kelch, MDM2 SWIB, and TSG101 UEV) with a wide range of affinities were tested. We found that peptide pulldown can be an effective approach for SLiM validation, however, parameters such as protein abundance and competitive interactions can prevent the capture of known interactors. The use of tandem peptide repeats improved the capture and preservation of some interactions. When testing PRISMA, it failed to provide comparable results for model peptides that successfully pulled down known interactors using biotinylated peptide pulldown. Overall, in our hands, we find that albeit more laborious, biotin-peptide pulldown was more successful in terms of validation of known interactions. Our results highlight that the tested affinity-capture MS-based methods for validation of SLiM-based interactions from cell lysates are suboptimal, and we identified parameters for consideration for method development.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Péptidos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Péptidos/química , Espectrometría de Masas/métodos , Cromatografía de Afinidad
11.
Essays Biochem ; 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36504386

RESUMEN

Viruses are the obligate intracellular parasites that exploit the host cellular machinery to replicate their genome. During the viral life cycle viruses manipulate the host cell through interactions with host proteins. Many of these protein-protein interactions are mediated through the recognition of host globular domains by short linear motifs (SLiMs), or longer intrinsically disordered domains (IDD), in the disordered regions of viral proteins. However, viruses also employ their own globular domains for binding to SLiMs and IDDs present in host proteins or virus proteins. In this review, we focus on the different strategies adopted by viruses to utilize proteins or protein domains for binding to the disordered regions of human or/and viral ligands. With a set of examples, we describe viral domains that bind human SLiMs. We also provide examples of viral proteins that bind to SLiMs, or IDDs, of viral proteins as a part of complex assembly and regulation of protein functions. The protein-protein interactions are often crucial for viral replication, and may thus offer possibilities for innovative inhibitor design.

12.
Viruses ; 14(10)2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36298757

RESUMEN

Viruses are dependent on host factors in order to efficiently establish an infection and replicate. Targeting the interactions of such host factors provides an attractive strategy to develop novel antivirals. Syntenin is a protein known to regulate the architecture of cellular membranes by its involvement in protein trafficking and has previously been shown to be important for human papilloma virus (HPV) infection. Here, we show that a highly potent and metabolically stable peptide inhibitor that binds to the PDZ1 domain of syntenin inhibits severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection by blocking the endosomal entry of the virus. Furthermore, we found that the inhibitor also hampered chikungunya infection and strongly reduced flavivirus infection, which is completely dependent on receptor-mediated endocytosis for their entry. In conclusion, we have identified a novel broad spectrum antiviral inhibitor that efficiently targets a broad range of RNA viruses.


Asunto(s)
COVID-19 , Virus ARN , Humanos , SARS-CoV-2 , Sinteninas , Antivirales/farmacología , Antivirales/química , Internalización del Virus
13.
Elife ; 112022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35924897

RESUMEN

Protein phosphatase 2A (PP2A) holoenzymes target broad substrates by recognizing short motifs via regulatory subunits. PP2A methylesterase 1 (PME-1) is a cancer-promoting enzyme and undergoes methylesterase activation upon binding to the PP2A core enzyme. Here, we showed that PME-1 readily demethylates different families of PP2A holoenzymes and blocks substrate recognition in vitro. The high-resolution cryoelectron microscopy structure of a PP2A-B56 holoenzyme-PME-1 complex reveals that PME-1 disordered regions, including a substrate-mimicking motif, tether to the B56 regulatory subunit at remote sites. They occupy the holoenzyme substrate-binding groove and allow large structural shifts in both holoenzyme and PME-1 to enable multipartite contacts at structured cores to activate the methylesterase. B56 interface mutations selectively block PME-1 activity toward PP2A-B56 holoenzymes and affect the methylation of a fraction of total cellular PP2A. The B56 interface mutations allow us to uncover B56-specific PME-1 functions in p53 signaling. Our studies reveal multiple mechanisms of PME-1 in suppressing holoenzyme functions and versatile PME-1 activities derived from coupling substrate-mimicking motifs to dynamic structured cores.


Asunto(s)
Proteína Fosfatasa 2 , Microscopía por Crioelectrón , Desmetilación , Holoenzimas/metabolismo , Metilación , Proteína Fosfatasa 2/metabolismo
15.
Mol Syst Biol ; 18(1): e10584, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35044719

RESUMEN

Specific protein-protein interactions are central to all processes that underlie cell physiology. Numerous studies have together identified hundreds of thousands of human protein-protein interactions. However, many interactions remain to be discovered, and low affinity, conditional, and cell type-specific interactions are likely to be disproportionately underrepresented. Here, we describe an optimized proteomic peptide-phage display library that tiles all disordered regions of the human proteome and allows the screening of ~ 1,000,000 overlapping peptides in a single binding assay. We define guidelines for processing, filtering, and ranking the results and provide PepTools, a toolkit to annotate the identified hits. We uncovered >2,000 interaction pairs for 35 known short linear motif (SLiM)-binding domains and confirmed the quality of the produced data by complementary biophysical or cell-based assays. Finally, we show how the amino acid resolution-binding site information can be used to pinpoint functionally important disease mutations and phosphorylation events in intrinsically disordered regions of the proteome. The optimized human disorderome library paired with PepTools represents a powerful pipeline for unbiased proteome-wide discovery of SLiM-based interactions.


Asunto(s)
Proteoma , Proteómica , Sitios de Unión , Humanos , Biblioteca de Péptidos , Péptidos/genética , Péptidos/metabolismo , Unión Proteica , Proteoma/genética , Proteoma/metabolismo
16.
Biochem J ; 479(1): 1-22, 2022 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-34989786

RESUMEN

Cellular function is based on protein-protein interactions. A large proportion of these interactions involves the binding of short linear motifs (SLiMs) by folded globular domains. These interactions are regulated by post-translational modifications, such as phosphorylation, that create and break motif binding sites or tune the affinity of the interactions. In addition, motif-based interactions are involved in targeting serine/threonine kinases and phosphatases to their substrate and contribute to the specificity of the enzymatic actions regulating which sites are phosphorylated. Here, we review how SLiM-based interactions assist in determining the specificity of serine/threonine kinases and phosphatases, and how phosphorylation, in turn, affects motif-based interactions. We provide examples of SLiM-based interactions that are turned on/off, or are tuned by serine/threonine phosphorylation and exemplify how this affects SLiM-based protein complex formation.


Asunto(s)
Dominios y Motivos de Interacción de Proteínas , Serina/química , Serina/metabolismo , Treonina/química , Treonina/metabolismo , Sitios de Unión , Humanos , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Especificidad por Sustrato
17.
Nat Commun ; 12(1): 6761, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34799561

RESUMEN

Viral proteins make extensive use of short peptide interaction motifs to hijack cellular host factors. However, most current large-scale methods do not identify this important class of protein-protein interactions. Uncovering peptide mediated interactions provides both a molecular understanding of viral interactions with their host and the foundation for developing novel antiviral reagents. Here we describe a viral peptide discovery approach covering 23 coronavirus strains that provides high resolution information on direct virus-host interactions. We identify 269 peptide-based interactions for 18 coronaviruses including a specific interaction between the human G3BP1/2 proteins and an ΦxFG peptide motif in the SARS-CoV-2 nucleocapsid (N) protein. This interaction supports viral replication and through its ΦxFG motif N rewires the G3BP1/2 interactome to disrupt stress granules. A peptide-based inhibitor disrupting the G3BP1/2-N interaction dampened SARS-CoV-2 infection showing that our results can be directly translated into novel specific antiviral reagents.


Asunto(s)
Factores de Integración del Huésped/metabolismo , SARS-CoV-2/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , ADN Helicasas/metabolismo , Humanos , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Replicación Viral/fisiología
18.
Curr Res Struct Biol ; 3: 41-50, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34235485

RESUMEN

PDZ domains constitute a large family of modular domains that are well-known for binding C-terminal motifs of target proteins. Some of them also bind to internal PDZ binding motifs (PDZbms), but this aspect of the PDZ interactome is poorly studied. Here we explored internal PDZbm-mediated interactions using the PDZ domain of Shank1 as a model. We identified a series of human Shank1 ligands with C-terminal or internal PDZbms using proteomic peptide-phage display, and established that while the consensus sequence of C-terminal ligands is x-T-x-(L/F)-COOH, the consensus of internal PDZbm is exclusively x-T-x-F-x, where x is any amino acid. We found that the affinities of PDZbm interactions are in the low micromolar range. The crystal structure of the complex between Shank1 PDZ and an internal PDZbm revealed that the binding mode of internal PDZbms was similar to that of C-terminal ligands. Pull-down experiments confirmed that both C-terminal and internal PDZbm interactions can occur in the context of full-length proteins. Our study expands the interactome of Shank1 and hints at a largely unexplored interaction space of PDZ domains.

19.
Methods Mol Biol ; 2256: 41-60, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34014515

RESUMEN

PSD95-Disc large-Zonula occludens (PDZ) domains are among the most abundant modular domains in the human proteome. They typically bind short carboxy-terminal sequence motifs of their ligand proteins, which may be transmembrane proteins such as ion channels and GPCRs, as well as soluble proteins. The identity of the endogenous ligands of many PDZ domains remains unclear despite more than two decades of PDZ research. Combinatorial peptide phage display and bioinformatics predictions have contributed to shed light on PDZ-mediated interactions. However, the efficiency of these methods for the identification of interactions of potential biological relevance is hampered by different biases. Proteomic peptide-phage display (ProP-PD) was developed to overcome these limitations. Here we describe a ProP-PD protocol for the identification of C-terminal PDZ domain ligands. The method efficiently identifies peptide ligands within a proteome of interest, and pinpoint targets of potential biological relevance.


Asunto(s)
Técnicas de Visualización de Superficie Celular/métodos , Dominios PDZ , Fragmentos de Péptidos/metabolismo , Biblioteca de Péptidos , Proteoma/metabolismo , Sitios de Unión , Humanos , Unión Proteica , Mapeo de Interacción de Proteínas , Proteoma/análisis
20.
Sci Signal ; 14(665)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436498

RESUMEN

The spike protein of SARS-CoV-2 binds the angiotensin-converting enzyme 2 (ACE2) on the host cell surface and subsequently enters host cells through receptor-mediated endocytosis. Additional cell receptors may be directly or indirectly involved, including integrins. The cytoplasmic tails of ACE2 and integrins contain several predicted short linear motifs (SLiMs) that may facilitate internalization of the virus as well as its subsequent propagation through processes such as autophagy. Here, we measured the binding affinity of predicted interactions between SLiMs in the cytoplasmic tails of ACE2 and integrin ß3 with proteins that mediate endocytic trafficking and autophagy. We validated that a class I PDZ-binding motif mediated binding of ACE2 to the scaffolding proteins SNX27, NHERF3, and SHANK, and that a binding site for the clathrin adaptor AP2 µ2 in ACE2 overlaps with a phospho-dependent binding site for the SH2 domains of Src family tyrosine kinases. Furthermore, we validated that an LC3-interacting region (LIR) in integrin ß3 bound to the ATG8 domains of the autophagy receptors MAP1LC3 and GABARAP in a manner enhanced by LIR-adjacent phosphorylation. Our results provide molecular links between cell receptors and mediators of endocytosis and autophagy that may facilitate viral entry and propagation.


Asunto(s)
Enzima Convertidora de Angiotensina 2/fisiología , COVID-19/virología , Integrina beta3/fisiología , Receptores Virales/fisiología , SARS-CoV-2/fisiología , SARS-CoV-2/patogenicidad , Internalización del Virus , Secuencia de Aminoácidos , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Autofagia/fisiología , Endocitosis/fisiología , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/fisiología , Humanos , Integrina beta3/química , Integrina beta3/genética , Modelos Moleculares , Pandemias , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/fisiología , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Señales de Clasificación de Proteína/genética , Señales de Clasificación de Proteína/fisiología , Receptores Virales/química , Receptores Virales/genética , SARS-CoV-2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...