Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Metab ; 35(10): 1722-1735.e5, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37689069

RESUMEN

Except for latitudes close to the equator, seasonal variation in light hours can change dramatically between summer and winter. Yet investigations into the interplay between energy metabolism and circadian rhythms typically use a 12 h light:12 h dark photoperiod corresponding to the light duration at the equator. We hypothesized that altering the seasonal photoperiod affects both the rhythmicity of peripheral tissue clocks and energy homeostasis. Mice were housed at photoperiods representing either light hours in summer, winter, or the equinox. Mice housed at a winter photoperiod exhibited an increase in the amplitude of rhythmic lipid metabolism and a modest reduction in fat mass and liver triglyceride content. Comparing melatonin-proficient and -deficient mice, the effect of seasonal light on energy metabolism was largely driven by differences in the rhythmicity of food intake and not melatonin. Together, these data indicate that seasonal light impacts energy metabolism by modulating the timing of eating.

2.
Mol Metab ; 57: 101440, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35026435

RESUMEN

OBJECTIVE: The glucose tolerance test (GTT) is widely used in preclinical research to investigate glucose metabolism, but there is no standardised way to administer glucose. The aim of this study was to directly compare the effect of the route of glucose administration on glucose and insulin kinetics during a GTT in mice. METHODS: A GTT was performed in lean male and female mice and obese male mice and glucose was administered via the oral or intraperitoneal (I.P.) route. Samples were collected frequently during the GTT to provide a full time-course of the insulin and glucose excursions. In another cohort of lean male mice, plasma concentrations of insulin, c-peptide, and incretin hormones were measured at early time points after glucose administration. A stable-isotope labelled GTT (SiGTT) was then performed to delineate the contribution of exogenous and endogenous glucose to glycemia during the GTT, comparing both methods of glucose administration. Finally, we present a method to easily measure insulin from small volumes of blood during a GTT by directly assaying whole-blood insulin using ELISA and show a good concordance between whole-blood and plasma insulin measurements. RESULTS: We report that I.P. glucose administration results in an elevated blood glucose excursion and a largely absent elevation in blood insulin and plasma incretin hormones when compared to oral administration. Utilising stable-isotope labelled glucose, we demonstrate that the difference in glucose excursion between the two routes of administration is mainly due to the lack of suppression of glucose production in I.P. injected mice. Additionally, rates of exogenous glucose appearance into circulation were different between lean and obese mice after I.P., but not after oral glucose administration. CONCLUSION: Reflecting on these data, we suggest that careful consideration be given to the route of glucose administration when planning a GTT procedure in mice and that in most circumstances the oral route of glucose administration should be preferred over the I.P. route to avoid possible artifacts originating from a non-physiological route.


Asunto(s)
Glucemia , Insulina , Animales , Glucemia/metabolismo , Femenino , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Humanos , Incretinas/metabolismo , Insulina/metabolismo , Masculino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...