Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 33(20): 4405-4414.e4, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37769661

RESUMEN

Next to iron (Fe), recent phytoplankton-enrichment experiments identified manganese (Mn) to (co-)limit Southern Ocean phytoplankton biomass and species composition. Since taxonomic diversity affects aggregation time and sinking rate, the efficiency of the biological carbon pump is directly affected by community structure. However, the impact of FeMn co-limitation on Antarctic primary production, community composition, and the subsequent export of carbon to depth requires more investigation. In situ samplings of 6 stations in the understudied southern Weddell Sea revealed that surface Fe and Mn concentrations, primary production, and carbon export rates were all low, suggesting a FeMn co-limited phytoplankton community. An Fe and Mn addition experiment examined how changes in the species composition drive the aggregation capability of a natural phytoplankton community. Primary production rates were highest when Fe and Mn were added together, due to an increased abundance of the colonial prymnesiophyte Phaeocystis antarctica. Although the community remained diatom dominated, the increase in Phaeocystis abundance led to highly carbon-enriched aggregates and a 4-fold increase in the carbon export potential compared to the control, whereas it only doubled in the Fe treatment. Based on the outcome of the FeMn-enrichment experiment, this region may suffer from FeMn co-limitation. As the Weddell Sea represents one of the most productive Antarctic marginal ice zones, our findings highlight that in response to greater Fe and Mn supply, changes in plankton community composition and primary production can have a disproportionally larger effect on the carbon export potential.


Asunto(s)
Diatomeas , Haptophyta , Hierro , Manganeso , Carbono , Fitoplancton/fisiología , Diatomeas/fisiología , Regiones Antárticas , Océanos y Mares
2.
Commun Biol ; 6(1): 206, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36810576

RESUMEN

Phytoplankton forms the base of aquatic food webs and element cycling in diverse aquatic systems. The fate of phytoplankton-derived organic matter, however, often remains unresolved as it is controlled by complex, interlinked remineralization and sedimentation processes. We here investigate a rarely considered control mechanism on sinking organic matter fluxes: fungal parasites infecting phytoplankton. We demonstrate that bacterial colonization is promoted 3.5-fold on fungal-infected phytoplankton cells in comparison to non-infected cells in a cultured model pathosystem (diatom Synedra, fungal microparasite Zygophlyctis, and co-growing bacteria), and even ≥17-fold in field-sampled populations (Planktothrix, Synedra, and Fragilaria). Additional data obtained using the Synedra-Zygophlyctis model system reveals that fungal infections reduce the formation of aggregates. Moreover, carbon respiration is 2-fold higher and settling velocities are 11-48% lower for similar-sized fungal-infected vs. non-infected aggregates. Our data imply that parasites can effectively control the fate of phytoplankton-derived organic matter on a single-cell to single-aggregate scale, potentially enhancing remineralization and reducing sedimentation in freshwater and coastal systems.


Asunto(s)
Diatomeas , Fitoplancton , Cadena Alimentaria , Bacterias , Agua Dulce/microbiología
3.
Ann Rev Mar Sci ; 15: 357-381, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36055975

RESUMEN

Understanding the nature of organic matter flux in the ocean remains a major goal of oceanography because it impacts some of the most important processes in the ocean. Sinking particles are important for carbon dioxide removal from the atmosphere and its movement to the deep ocean. They also feed life below the ocean's productive surface and sustain life in the deep sea, in addition to depositing organic matter on the seafloor. However, the magnitude of all of these processes is dependent on the transformation of sinking particles during their journey through the water column. This review focuses on the movement of organic matter from the surface ocean to the deep sea via the biological carbon pump and examines the processes that prevent this downward movement-namely, attenuation via microbial colonization and zooplankton feeding. It also discusses how the depth-specific interactions among microbes, zooplankton, and aggregates determine carbon export as well as nutrient recycling, which in turn impact ocean production and Earth's climate.


Asunto(s)
Atmósfera , Zooplancton , Animales , Dióxido de Carbono/análisis , Clima , Océanos y Mares , Agua de Mar
4.
Nat Commun ; 12(1): 7168, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34887407

RESUMEN

Krill and salps are important for carbon flux in the Southern Ocean, but the extent of their contribution and the consequences of shifts in dominance from krill to salps remain unclear. We present a direct comparison of the contribution of krill and salp faecal pellets (FP) to vertical carbon flux at the Antarctic Peninsula using a combination of sediment traps, FP production, carbon content, microbial degradation, and krill and salp abundances. Salps produce 4-fold more FP carbon than krill, but the FP from both species contribute equally to the carbon flux at 300 m, accounting for 75% of total carbon. Krill FP are exported to 72% to 300 m, while 80% of salp FP are retained in the mixed layer due to fragmentation. Thus, declining krill abundances could lead to decreased carbon flux, indicating that the Antarctic Peninsula could become a less efficient carbon sink for anthropogenic CO2 in future.


Asunto(s)
Ciclo del Carbono , Carbono/metabolismo , Euphausiacea/metabolismo , Agua de Mar/análisis , Animales , Regiones Antárticas , Heces/química
5.
Nat Commun ; 12(1): 7309, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34911949

RESUMEN

The ocean moderates the world's climate through absorption of heat and carbon, but how much carbon the ocean will continue to absorb remains unknown. The North Atlantic Ocean west (Baffin Bay/Labrador Sea) and east (Fram Strait/Greenland Sea) of Greenland features the most intense absorption of anthropogenic carbon globally; the biological carbon pump (BCP) contributes substantially. As Arctic sea-ice melts, the BCP changes, impacting global climate and other critical ocean attributes (e.g. biodiversity). Full understanding requires year-round observations across a range of ice conditions. Here we present such observations: autonomously collected Eulerian continuous 24-month time-series in Fram Strait. We show that, compared to ice-unaffected conditions, sea-ice derived meltwater stratification slows the BCP by 4 months, a shift from an export to a retention system, with measurable impacts on benthic communities. This has implications for ecosystem dynamics in the future warmer Arctic where the seasonal ice zone is expected to expand.


Asunto(s)
Carbono/análisis , Cubierta de Hielo/química , Agua de Mar/química , Océano Atlántico , Ciclo del Carbono , Cambio Climático , Ecosistema , Groenlandia , Terranova y Labrador
6.
Commun Biol ; 4(1): 1255, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34732822

RESUMEN

Arctic Ocean sea ice cover is shrinking due to warming. Long-term sediment trap data shows higher export efficiency of particulate organic carbon in regions with seasonal sea ice compared to regions without sea ice. To investigate this sea-ice enhanced export, we compared how different early summer phytoplankton communities in seasonally ice-free and ice-covered regions of the Fram Strait affect carbon export and vertical dispersal of microbes. In situ collected aggregates revealed two-fold higher carbon export of diatom-rich aggregates in ice-covered regions, compared to Phaeocystis aggregates in the ice-free region. Using microbial source tracking, we found that ice-covered regions were also associated with more surface-born microbial clades exported to the deep sea. Taken together, our results showed that ice-covered regions are responsible for high export efficiency and provide strong vertical microbial connectivity. Therefore, continuous sea-ice loss may decrease the vertical export efficiency, and thus the pelagic-benthic coupling, with potential repercussions for Arctic deep-sea ecosystems.


Asunto(s)
Ciclo del Carbono , Cubierta de Hielo/química , Cubierta de Hielo/microbiología , Microbiota/fisiología , Archaea/metabolismo , Regiones Árticas , Bacterias/metabolismo , Océanos y Mares
7.
Commun Biol ; 4(1): 1061, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34508174

RESUMEN

Over the past decades, two key grazers in the Southern Ocean (SO), krill and salps, have experienced drastic changes in their distribution and abundance, leading to increasing overlap of their habitats. Both species occupy different ecological niches and long-term shifts in their distributions are expected to have cascading effects on the SO ecosystem. However, studies directly comparing krill and salps are lacking. Here, we provide a direct comparison of the diet and fecal pellet composition of krill and salps using 18S metabarcoding and fatty acid markers. Neither species' diet reflected the composition of the plankton community, suggesting that in contrast to the accepted paradigm, not only krill but also salps are selective feeders. Moreover, we found that krill and salps had broadly similar diets, potentially enhancing the competition between both species. This could be augmented by salps' ability to rapidly reproduce in favorable conditions, posing further risks to krill populations.


Asunto(s)
Euphausiacea/fisiología , Urocordados/fisiología , Animales , Dieta , Ácidos Grasos/análisis , ARN Ribosómico 18S/análisis
8.
Nat Commun ; 12(1): 3235, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-34050175

RESUMEN

Anaerobic oxidation of ammonium (anammox) in oxygen minimum zones (OMZs) is a major pathway of oceanic nitrogen loss. Ammonium released from sinking particles has been suggested to fuel this process. During cruises to the Peruvian OMZ in April-June 2017 we found that anammox rates are strongly correlated with the volume of small particles (128-512 µm), even though anammox bacteria were not directly associated with particles. This suggests that the relationship between anammox rates and particles is related to the ammonium released from particles by remineralization. To investigate this, ammonium release from particles was modelled and theoretical encounters of free-living anammox bacteria with ammonium in the particle boundary layer were calculated. These results indicated that small sinking particles could be responsible for ~75% of ammonium release in anoxic waters and that free-living anammox bacteria frequently encounter ammonium in the vicinity of smaller particles. This indicates a so far underestimated role of abundant, slow-sinking small particles in controlling oceanic nutrient budgets, and furthermore implies that observations of the volume of small particles could be used to estimate N-loss across large areas.


Asunto(s)
Compuestos de Amonio/metabolismo , Bacterias/metabolismo , Ciclo del Nitrógeno , Nitrógeno/metabolismo , Anaerobiosis , Océanos y Mares , Oxidación-Reducción , Perú , Agua de Mar/química , Agua de Mar/microbiología
9.
Microbiologyopen ; 8(5): e00705, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30311417

RESUMEN

Eastern boundary upwelling systems (EBUSs) are among the most productive marine environments in the world. The Canary Current upwelling system off the coast of Mauritania and Morocco is the second most productive of the four EBUS, where nutrient-rich waters fuel perennial phytoplankton blooms, evident by high chlorophyll a concentrations off Cape Blanc, Mauritania. High primary production leads to eutrophic waters in the surface layers, whereas sinking phytoplankton debris and horizontally dispersed particles form nepheloid layers (NLs) and hypoxic waters at depth. We used Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) in combination with fatty acid (measured as methyl ester; FAME) profiles to investigate the bacterial and archaeal community composition along transects from neritic to pelagic waters within the "giant Cape Blanc filament" in two consecutive years (2010 and 2011), and to evaluate the usage of FAME data for microbial community studies. We also report the first fatty acid profile of Pelagibacterales strain HTCC7211 which was used as a reference profile for the SAR11 clade. Unexpectedly, the reference profile contained low concentrations of long chain fatty acids 18:1 cis11, 18:1 cis11 11methyl, and 19:0 cyclo11-12 fatty acids, the main compounds in other Alphaproteobacteria. Members of the free-living SAR11 clade were found at increased relative abundance in the hypoxic waters in both years. In contrast, the depth profiles of Gammaproteobacteria (including Alteromonas and Pseudoalteromonas), Bacteroidetes, Roseobacter, and Synechococcus showed high abundances of these groups in layers where particle abundance was high, suggesting that particle attachment or association is an important mechanisms of dispersal for these groups. Collectively, our results highlight the influence of NLs, horizontal particle transport, and low oxygen on the structure and dispersal of microbial communities in upwelling systems.


Asunto(s)
Archaea/clasificación , Archaea/aislamiento & purificación , Bacterias/clasificación , Bacterias/aislamiento & purificación , Microbiota , Agua de Mar/microbiología , Archaea/química , Archaea/genética , Bacterias/química , Bacterias/genética , Ácidos Grasos/análisis , Hibridación Fluorescente in Situ , Mauritania , Marruecos
10.
Appl Environ Microbiol ; 81(4): 1463-71, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25527538

RESUMEN

Due to sampling difficulties, little is known about microbial communities associated with sinking marine snow in the twilight zone. A drifting sediment trap was equipped with a viscous cryogel and deployed to collect intact marine snow from depths of 100 and 400 m off Cape Blanc (Mauritania). Marine snow aggregates were fixed and washed in situ to prevent changes in microbial community composition and to enable subsequent analysis using catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH). The attached microbial communities collected at 100 m were similar to the free-living community at the depth of the fluorescence maximum (20 m) but different from those at other depths (150, 400, 550, and 700 m). Therefore, the attached microbial community seemed to be "inherited" from that at the fluorescence maximum. The attached microbial community structure at 400 m differed from that of the attached community at 100 m and from that of any free-living community at the tested depths, except that collected near the sediment at 700 m. The differences between the particle-associated communities at 400 m and 100 m appeared to be due to internal changes in the attached microbial community rather than de novo colonization, detachment, or grazing during the sinking of marine snow. The new sampling method presented here will facilitate future investigations into the mechanisms that shape the bacterial community within sinking marine snow, leading to better understanding of the mechanisms which regulate biogeochemical cycling of settling organic matter.


Asunto(s)
Bacterias/aislamiento & purificación , Sedimentos Geológicos/microbiología , Agua de Mar/microbiología , Nieve/microbiología , Bacterias/clasificación , Bacterias/genética , Biodiversidad , Sedimentos Geológicos/química , Datos de Secuencia Molecular , Filogenia , Nieve/química
11.
FEMS Microbiol Ecol ; 81(2): 373-85, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22416918

RESUMEN

The Global Ocean Sampling (GOS) expedition is currently the largest and geographically most comprehensive metagenomic dataset, including samples from the Atlantic, Pacific, and Indian Oceans. This study makes use of the wide range of environmental conditions and habitats encompassed within the GOS sites in order to investigate the ecological structuring of bacterial and archaeal taxon ranks. Community structures based on taxonomically classified 16S ribosomal RNA (rRNA) gene fragments at phylum, class, order, family, and genus rank levels were examined using multivariate statistical analysis, and the results were inspected in the context of oceanographic environmental variables and structured habitat classifications. At all taxon rank levels, community structures of neritic, oceanic, estuarine biomes, as well as other exotic biomes (salt marsh, lake, mangrove), were readily distinguishable from each other. A strong structuring of the communities with chlorophyll a concentration and a weaker yet significant structuring with temperature and salinity were observed. Furthermore, there were significant correlations between community structures and habitat classification. These results were used for further investigation of one-to-one relationships between taxa and environment and provided indications for ecological preferences shaped by primary production for both cultured and uncultured bacterial and archaeal clades.


Asunto(s)
Archaea/clasificación , Bacterias/clasificación , Metagenómica , Agua de Mar/microbiología , Archaea/genética , Bacterias/genética , Clorofila/análisis , Clorofila A , Ecología , Ecosistema , Genes de ARNr , Geografía , Análisis Multivariante , Océanos y Mares , ARN Ribosómico 16S/genética
12.
ISME J ; 5(3): 436-45, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20827289

RESUMEN

Aggregation of algae, mainly diatoms, is an important process in marine systems leading to the settling of particulate organic carbon predominantly in the form of marine snow. Exudation products of phytoplankton form transparent exopolymer particles (TEP), which acts as the glue for particle aggregation. Heterotrophic bacteria interacting with phytoplankton may influence TEP formation and phytoplankton aggregation. This bacterial impact has not been explored in detail. We hypothesized that bacteria attaching to Thalassiosira weissflogii might interact in a yet-to-be determined manner, which could impact TEP formation and aggregate abundance. The role of individual T. weissflogii-attaching and free-living new bacterial isolates for TEP production and diatom aggregation was investigated in vitro. T. weissflogii did not aggregate in axenic culture, and striking differences in aggregation dynamics and TEP abundance were observed when diatom cultures were inoculated with either diatom-attaching or free-living bacteria. The data indicated that free-living bacteria might not influence aggregation whereas bacteria attaching to diatom cells may increase aggregate formation. Interestingly, photosynthetically inactivated T. weissflogii cells did not aggregate regardless of the presence of bacteria. Comparison of aggregate formation, TEP production, aggregate sinking velocity and solid hydrated density revealed remarkable differences. Both, photosynthetically active T. weissflogii and specific diatom-attaching bacteria were required for aggregation. It was concluded that interactions between heterotrophic bacteria and diatoms increased aggregate formation and particle sinking and thus may enhance the efficiency of the biological pump.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Diatomeas/microbiología , Diatomeas/fisiología , Bacterias/genética , Bacterias/metabolismo , Técnicas de Cultivo de Célula , Diatomeas/metabolismo , Diatomeas/ultraestructura , ARN Ribosómico 16S/genética
13.
PLoS One ; 5(11): e15039, 2010 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-21124775

RESUMEN

Marine dinoflagellates of the genus Alexandrium are the proximal source of neurotoxins associated with Paralytic Shellfish Poisoning. The production of these toxins, the toxin biosynthesis and, thus, the cellular toxicity can be influenced by abiotic and biotic factors. There is, however, a lack of substantial evidence concerning the toxins' ecological function such as grazing defense. Waterborne cues from copepods have been previously found to induce a species-specific increase in toxin content in Alexandrium minutum. However, it remains speculative in which context these species-specific responses evolved and if it occurs in other Alexandrium species as well. In this study we exposed Alexandrium tamarense to three copepod species (Calanus helgolandicus, Acartia clausii, and Oithona similis) and their corresponding cues. We show that the species-specific response towards copepod-cues is not restricted to one Alexandrium species and that co-evolutionary processes might be involved in these responses, thus giving additional evidence for the defensive role of phycotoxins. Through a functional genomic approach we gained insights into the underlying molecular processes which could trigger the different outcomes of these species-specific responses and consequently lead to increased toxin content in Alexandrium tamarense. We propose that the regulation of serine/threonine kinase signaling pathways has a major influence in directing the external stimuli i.e. copepod-cues, into different intracellular cascades and networks in A. tamarense. Our results show that A. tamarense can sense potential predating copepods and respond to the received information by increasing its toxin production. Furthermore, we demonstrate how a functional genomic approach can be used to investigate species interactions within the plankton community.


Asunto(s)
Evolución Biológica , Copépodos/fisiología , Dinoflagelados/metabolismo , Toxinas Marinas/metabolismo , Animales , Copépodos/clasificación , Dinoflagelados/genética , Ecosistema , Etiquetas de Secuencia Expresada , Conducta Alimentaria/fisiología , Perfilación de la Expresión Génica , Conducta Predatoria/fisiología , Agua de Mar/química , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...