Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
J Neuroeng Rehabil ; 21(1): 4, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172975

RESUMEN

BACKGROUND: Recently we reported the design and evaluation of floating semi-implantable devices that receive power from and bidirectionally communicate with an external system using coupling by volume conduction. The approach, of which the semi-implantable devices are proof-of-concept prototypes, may overcome some limitations presented by existing neuroprostheses, especially those related to implant size and deployment, as the implants avoid bulky components and can be developed as threadlike devices. Here, it is reported the first-in-human acute demonstration of these devices for electromyography (EMG) sensing and electrical stimulation. METHODS: A proof-of-concept device, consisting of implantable thin-film electrodes and a nonimplantable miniature electronic circuit connected to them, was deployed in the upper or lower limb of six healthy participants. Two external electrodes were strapped around the limb and were connected to the external system which delivered high frequency current bursts. Within these bursts, 13 commands were modulated to communicate with the implant. RESULTS: Four devices were deployed in the biceps brachii and the gastrocnemius medialis muscles, and the external system was able to power and communicate with them. Limitations regarding insertion and communication speed are reported. Sensing and stimulation parameters were configured from the external system. In one participant, electrical stimulation and EMG acquisition assays were performed, demonstrating the feasibility of the approach to power and communicate with the floating device. CONCLUSIONS: This is the first-in-human demonstration of EMG sensors and electrical stimulators powered and operated by volume conduction. These proof-of-concept devices can be miniaturized using current microelectronic technologies, enabling fully implantable networked neuroprosthetics.


Asunto(s)
Terapia por Estimulación Eléctrica , Músculo Esquelético , Humanos , Electromiografía , Electrodos Implantados , Músculo Esquelético/fisiología , Extremidad Inferior , Tecnología Inalámbrica
2.
Circ Arrhythm Electrophysiol ; 17(1): e012026, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38152949

RESUMEN

BACKGROUND: Effects of contact force (CF) on lesion formation during pulsed field ablation (PFA) have not been well validated. The purpose of this study was to determine the relationship between average CF and lesion size during PFA using a swine-beating heart model. METHODS: A 7F catheter with a 3.5-mm ablation electrode and CF sensor (TactiCath SE, Abbott) was connected to a PFA system (CENTAURI, Galvanize Therapeutics). In 5 closed-chest swine, biphasic PFA current was delivered between the ablation electrode and a skin patch at 40 separate sites in right ventricle (28 Amp) and 55 separate sites in left ventricle (35 Amp) with 4 different levels of CF: (1) low (CF range of 4-13 g; median, 9.5 g); (2) moderate (15-30 g; median, 21.5 g); (3) high (34-55 g; median, 40 g); and (4) no electrode contact, 2 mm away from the endocardium. Swine were sacrificed at 2 hours after ablation, and lesion size was measured using triphenyl tetrazolium chloride staining. In 1 additional swine, COX (cytochrome c oxidase) staining was performed to examine mitochondrial activity to delineate reversible and irreversible lesion boundaries. Histological examination was performed with hematoxylin and eosin and Masson trichrome staining. RESULTS: Ablation lesions were well demarcated with triphenyl tetrazolium chloride staining, showing (1) a dark central zone (contraction band necrosis and hemorrhage); (2) a pale zone (no mitochondrial activity and nuclear pyknosis, indicating apoptosis zone); and a hyperstained zone by triphenyl tetrazolium chloride and COX staining (unaffected normal myocardium with preserved mitochondrial activity, consistent with reversible zone). At constant PFA current intensity, lesion depth increased significantly with increasing CF. There were no detectable lesions resulting from ablation without electrode contact. CONCLUSIONS: Acute PFA ventricular lesions show irreversible and reversible lesion boundaries by triphenyl tetrazolium chloride staining. Electrode-tissue contact is required for effective lesion formation during PFA. At the same PFA dose, lesion depth increases significantly with increasing CF.


Asunto(s)
Ablación por Catéter , Ventrículos Cardíacos , Porcinos , Animales , Ventrículos Cardíacos/cirugía , Ventrículos Cardíacos/patología , Ablación por Catéter/efectos adversos , Ablación por Catéter/métodos , Cloruros , Corazón , Catéteres
3.
Circ Arrhythm Electrophysiol ; 16(9): e011914, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37577822

RESUMEN

BACKGROUND: Pulsed field ablation (PFA) is a novel nonthermal cardiac ablation technology based on irreversible electroporation (IRE). While areas of IRE lead to durable lesions, the surrounding regions, where reversible electroporation occurs, recover. The behavior of local electrograms in areas of different electroporation levels remains unknown. The goal of this study is to characterize electrogram dynamics after PFA in IRE and reversible electroporation areas. METHODS: A total of 6 domestic swine were used. PFA was applied in the epicardium of the right and left ventricles using a focal monopolar catheter. Additional radiofrequency ablations were performed. Epicardial unipolar electrograms were acquired at baseline and for 60 minutes post PFA/radiofrequency ablation using a high-density electrode matrix attached to the epicardium. Electrogram dynamics were analyzed in areas corresponding to different levels of electroporation. Acute lesion formation was assessed after 3 to 5 hours by triphenyl tetrazolium chloride staining. RESULTS: Electrogram analysis demonstrated a clear association between electrogram changes and the level of electroporation. Immediately after PFA, electrograms displayed the following: a significant decrease in R/S-wave amplitude; a large elevation of the ST-segment; and a large decrease in their |(dV/dt)|max. Marked changes in electrograms were observed beyond the lesion area. Thereafter, a gradual recovery was observed. The evolution of all the electrogram parameters throughout the 60 minutes after PFA was significantly different (P<0.05) between the IRE and reversible electroporation areas. Acute lesion staining showed significantly larger depth for PFA lesions compared with radiofrequency ablation. CONCLUSIONS: This study shows that unipolar electrograms can differentiate between reversible electroporation and IRE areas during the first 30 minutes post ablation. Differences after the first 30 minutes are less evident. Our findings could result useful for immediate lesion assessment after PFA and warrant further investigation.


Asunto(s)
Ablación por Catéter , Ablación por Radiofrecuencia , Porcinos , Animales , Electroporación , Terapia de Electroporación
4.
IEEE Trans Biomed Eng ; 70(6): 1902-1910, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37015676

RESUMEN

Tissue electroporation is the basis of several therapies. Electroporation is performed by briefly exposing tissues to high electric fields. It is generally accepted that electroporation is effective where an electric field magnitude threshold is overreached. However, it is difficult to preoperatively estimate the field distribution because it is highly dependent on anatomy and treatment parameters. OBJECTIVE: We developed PIRET, a platform to predict the treatment volume in electroporation-based therapies. METHODS: The platform seamlessly integrates tools to build patient-specific models where the electric field is simulated to predict the treatment volume. Patient anatomy is segmented from medical images and 3D reconstruction aids in placing the electrodes and setting up treatment parameters. RESULTS: Four canine patients that had been treated with high-frequency irreversible electroporation were retrospectively planned with PIRET and with a workflow commonly used in previous studies, which uses different general-purpose segmentation (3D Slicer) and modeling software (3Matic and COMSOL Multiphysics). PIRET outperformed the other workflow by 65 minutes (× 1.7 faster), thanks to the improved user experience during treatment setup and model building. Both approaches computed similarly accurate electric field distributions, with average Dice scores higher than 0.93. CONCLUSION: A platform which integrates all the required tools for electroporation treatment planning is presented. Treatment plan can be performed rapidly with minimal user interaction in a stand-alone platform. SIGNIFICANCE: This platform is, to the best of our knowledge, the most complete software for treatment planning of irreversible electroporation. It can potentially be used for other electroporation applications.


Asunto(s)
Electroquimioterapia , Animales , Perros , Electroquimioterapia/métodos , Estudios Retrospectivos , Electroporación/métodos , Programas Informáticos , Terapia de Electroporación
5.
IEEE Trans Biomed Eng ; 70(2): 659-670, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35994554

RESUMEN

OBJECTIVE: Wireless power transfer (WPT) is used as an alternative to batteries to accomplish miniaturization in electronic medical implants. However, established WPT methods require bulky parts within the implant or cumbersome external systems, hindering minimally invasive deployments and the development of networks of implants. As an alternative, we propose a WPT approach based on volume conduction of high frequency (HF) current bursts. These currents are applied through external electrodes and are collected by the implants through two electrodes at their opposite ends. This approach avoids bulky components, enabling the development of flexible threadlike implants. METHODS: We study in humans if HF (6.78 MHz) current bursts complying with safety standards and applied through two textile electrodes strapped around a limb can provide substantial powers from pairs of implanted electrodes. RESULTS: Time averaged electric powers obtained from needle electrodes (diameter = 0.4 mm, length = 3 mm, separation = 30 mm) inserted into arms and lower legs of five healthy participants were 5.9 ± 0.7 mW and 2.4 ± 0.3 mW respectively. We also characterize the coupling between the external system and the implants using personalized two-port impedance models generated from medical images. CONCLUSIONS: The results demonstrate that innocuous and imperceptible HF current bursts that flow through the tissues by volume conduction can be used to wirelessly power threadlike implants. SIGNIFICANCE: This is the first time that WPT based on volume conduction is demonstrated in humans. This method overcomes the limitations of existing WPT methods in terms of minimal invasiveness and usability.


Asunto(s)
Electrónica Médica , Prótesis e Implantes , Humanos , Electrodos Implantados , Suministros de Energía Eléctrica , Miniaturización , Tecnología Inalámbrica
6.
Circ Arrhythm Electrophysiol ; 15(10): e010992, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36178752

RESUMEN

BACKGROUND: Pulsed field ablation (PFA) is a novel nonthermal cardiac ablation technology based on irreversible electroporation. Unfortunately, the characteristics of the electric field waveforms used in clinical and experimental PFA are not typically reported. This study examines the effect of the frequency of biphasic waveforms and compares biphasic to monophasic waveforms. METHODS: A total of 29 Sprague-Dawley rats were treated with PFA using an epicardial monopolar electrode. Biphasic waveforms with three different frequencies, 90, 260, and 450 kHz (10 bursts of 100 µs duration at 500 V or 800 V) and monophasic waveforms (10 pulses of 100 µs duration at 500 V) were studied. Collateral neuromuscular stimulation and temperature increase in the point of application were directly measured. Lesion formation was assessed 3 weeks after treatment by histopathologic analysis. Computer simulations were used to estimate the electric field lethal threshold for each condition. A previous in vitro study was performed to draw a complete characterization of the studied dependencies. RESULTS: Morphometric analysis demonstrated a significant association between chronic lesion size and waveform characteristics. For the same voltage level, monophasic waveforms yielded the largest lesions compared with any of the biphasic protocols (P<0.05). Increasing PFA frequency was associated with reduced neuromuscular stimulation but also with reduced ablation efficacy. Maximum absolute temperature increase recorded along a complete treatment was 3 °C. Vascular structures inside the lesions were preserved for all conditions. Computer simulation-based analysis showed that waveform frequency had a graded effect on the lethal electric field threshold, with threshold of 600 V/cm for monophasic waveforms versus 2000 V/cm for biphasic waveforms with a frequency of 450 kHz. CONCLUSIONS: Frequency is a major determinant of efficacy in biphasic PFA. Our results highlight the critical need of disclosing waveform characteristics when reporting the results of different PFA systems.


Asunto(s)
Ablación por Catéter , Cardioversión Eléctrica , Animales , Ratas , Cardioversión Eléctrica/métodos , Simulación por Computador , Ratas Sprague-Dawley , Corazón
7.
Sci Rep ; 12(1): 16144, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36167959

RESUMEN

Pulsed Field Ablation (PFA) has been developed over the last years as a novel electrical ablation technique for treating cardiac arrhythmias. It is based on irreversible electroporation which is a non-thermal phenomenon innocuous to the extracellular matrix and, because of that, PFA is considered to be safer than the reference technique, Radiofrequency Ablation (RFA). However, possible differences in lesion morphology between both techniques have been poorly studied. Simulations including electric, thermal and fluid physics were performed in a simplified model of the cardiac chamber which, in essence, consisted of a slab of myocardium with blood in motion on the top. Monopolar and bipolar catheter configurations were studied. Different blood velocities and catheter orientations were assayed. RFA was simulated assuming a conventional temperature-controlled approach. The PFA treatment was assumed to consist in a sequence of 20 biphasic bursts (100 µs duration). Simulations indicate that, for equivalent lesion depths, PFA lesions are wider, larger and more symmetrical than RFA lesions for both catheter configurations. RFA lesions display a great dependence on blood velocity while PFA lesions dependence is negligible on it. For the monopolar configuration, catheter angle with respect to the cardiac surface impacted both ablation techniques but in opposite sense. The orientation of the catheter with respect to blood flow direction only affected RFA lesions. In this study, substantial morphological differences between RFA and PFA lesions were predicted numerically. Negligible dependence of PFA on blood flow velocity and direction is a potential important advantage of this technique over RFA.


Asunto(s)
Ablación por Catéter , Ablación por Radiofrecuencia , Arritmias Cardíacas/patología , Ablación por Catéter/métodos , Corazón , Humanos , Miocardio/patología
8.
J Neural Eng ; 19(5)2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36041421

RESUMEN

Objective.To develop andin vivodemonstrate threadlike wireless implantable neuromuscular microstimulators that are digitally addressable.Approach.These devices perform, through its two electrodes, electronic rectification of innocuous high frequency current bursts delivered by volume conduction via epidermal textile electrodes. By avoiding the need of large components to obtain electrical energy, this approach allows the development of thin devices that can be intramuscularly implanted by minimally invasive procedures such as injection. For compliance with electrical safety standards, this approach requires a minimum distance, in the order of millimeters or a very few centimeters, between the implant electrodes. Additionally, the devices must cause minimal mechanical damage to tissues, avoid dislocation and be adequate for long-term implantation. Considering these requirements, the implants were conceived as tubular and flexible devices with two electrodes at opposite ends and, at the middle section, a hermetic metallic capsule housing the electronics.Main results.The developed implants have a submillimetric diameter (0.97 mm diameter, 35 mm length) and consist of a microcircuit, which contains a single custom-developed integrated circuit, housed within a titanium capsule (0.7 mm diameter, 6.5 mm length), and two platinum-iridium coils that form two electrodes (3 mm length) located at opposite ends of a silicone body. These neuromuscular stimulators are addressable, allowing to establish a network of microstimulators that can be controlled independently. Their operation was demonstrated in an acute study by injecting a few of them in the hind limb of anesthetized rabbits and inducing controlled and independent contractions.Significance.These results show the feasibility of manufacturing threadlike wireless addressable neuromuscular stimulators by using fabrication techniques and materials well established for chronic electronic implants. Although long-term operation still must be demonstrated, the obtained results pave the way to the clinical development of advanced motor neuroprostheses formed by dense networks of such wireless devices.


Asunto(s)
Terapia por Estimulación Eléctrica , Prótesis e Implantes , Animales , Electrodos Implantados , Electrónica , Miembro Posterior , Conejos , Tecnología Inalámbrica
9.
J Neuroeng Rehabil ; 19(1): 57, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35672857

RESUMEN

BACKGROUND: Implantable neuroprostheses consisting of a central electronic unit wired to electrodes benefit thousands of patients worldwide. However, they present limitations that restrict their use. Those limitations, which are more adverse in motor neuroprostheses, mostly arise from their bulkiness and the need to perform complex surgical implantation procedures. Alternatively, it has been proposed the development of distributed networks of intramuscular wireless microsensors and microstimulators that communicate with external systems for analyzing neuromuscular activity and performing stimulation or controlling external devices. This paradigm requires the development of miniaturized implants that can be wirelessly powered and operated by an external system. To accomplish this, we propose a wireless power transfer (WPT) and communications approach based on volume conduction of innocuous high frequency (HF) current bursts. The currents are applied through external textile electrodes and are collected by the wireless devices through two electrodes for powering and bidirectional digital communications. As these devices do not require bulky components for obtaining power, they may have a flexible threadlike conformation, facilitating deep implantation by injection. METHODS: We report the design and evaluation of advanced prototypes based on the above approach. The system consists of an external unit, floating semi-implantable devices for sensing and stimulation, and a bidirectional communications protocol. The devices are intended for their future use in acute human trials to demonstrate the distributed paradigm. The technology is assayed in vitro using an agar phantom, and in vivo in hindlimbs of anesthetized rabbits. RESULTS: The semi-implantable devices were able to power and bidirectionally communicate with the external unit. Using 13 commands modulated in innocuous 3 MHz HF current bursts, the external unit configured the sensing and stimulation parameters, and controlled their execution. Raw EMG was successfully acquired by the wireless devices at 1 ksps. CONCLUSIONS: The demonstrated approach overcomes key limitations of existing neuroprostheses, paving the way to the development of distributed flexible threadlike sensors and stimulators. To the best of our knowledge, these devices are the first based on WPT by volume conduction that can work as EMG sensors and as electrical stimulators in a network of wireless devices.


Asunto(s)
Prótesis e Implantes , Tecnología Inalámbrica , Animales , Electrodos , Miembro Posterior/fisiología , Humanos , Conejos
10.
Front Cell Neurosci ; 16: 856855, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35548372

RESUMEN

Brain electrical stimulation techniques take advantage of the intrinsic plasticity of the nervous system, opening a wide range of therapeutic applications. Vagus nerve stimulation (VNS) is an approved adjuvant for drug-resistant epilepsy and depression. Its non-invasive form, auricular transcutaneous VNS (atVNS), is under investigation for applications, including cognitive improvement. We aimed to study the effects of atVNS on brain connectivity, under conditions that improved memory persistence in CD-1 male mice. Acute atVNS in the cymba conchae of the left ear was performed using a standard stimulation protocol under light isoflurane anesthesia, immediately or 3 h after the training/familiarization phase of the novel object-recognition memory test (NORT). Another cohort of mice was used for bilateral c-Fos analysis after atVNS administration. Spearman correlation of c-Fos density between each pair of the thirty brain regions analyzed allowed obtaining the network of significant functional connections in stimulated and non-stimulated control brains. NORT performance was enhanced when atVNS was delivered just after, but not 3 h after, the familiarization phase of the task. No alterations in c-Fos density were associated with electrostimulation, but a significant effect of atVNS was observed on c-Fos-based functional connectivity. atVNS induced a clear reorganization of the network, increasing the inter-hemisphere connections and the connectivity of locus coeruleus. Our results provide new insights into the effects of atVNS on memory performance and brain connectivity extending our knowledge of the biological mechanisms of bioelectronics in medicine.

11.
IEEE Trans Biomed Eng ; 69(4): 1318-1327, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34559631

RESUMEN

OBJECTIVE: Irreversible electroporation (IRE) is a non-thermal tissue ablation therapy which is induced by applying high voltage waveforms across electrode pairs. When multiple electrode pairs are sequentially used, the treatment volume (TV) is typically computed as the geometric union of the TVs of individual pairs. However, this method neglects that some regions are exposed to overlapping treatments. Recently, a model describing cell survival probability was introduced which effectively predicted TV with overlapping fields in vivo. However, treatment overlap has yet to be quantified. This study characterizes TV overlap in a controlled in vitro setup with the two existing methods which are compared to an adapted logistic model proposed here. METHODS: CHO cells were immobilized in agarose gel. Initially, we characterized the electric field threshold and the cell survival probability for overlapping treatments. Subsequently, we created a 2D setup where we compared and validated the accuracy of the different methods in predicting the TV. RESULTS: Overlap can reduce the electric field threshold required to induce cell death, particularly for treatments with low pulse number. However, it does not have a major impact on TV in the models assayed here, and all the studied methods predict TV with similar accuracy. CONCLUSION: Treatment overlap has a minor influence in the TV for typical protocols found in IRE therapies. SIGNIFICANCE: This study provides evidence that the modeling method used in most pre-clinical and clinical studies seems adequate.


Asunto(s)
Electroporación , Animales , Muerte Celular , Supervivencia Celular , Cricetinae , Cricetulus , Electrodos , Electroporación/métodos
12.
JACC Clin Electrophysiol ; 7(8): 959-964, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34217666

RESUMEN

This study compared monophasic 100-µs pulses with high-frequency electroporation (HF-EP) bursts using an in vivo animal model. Myocardial damage was evaluated by histologic analysis. Compared with 10 monophasic pulses, 20 bursts of HF-EP at 100 and 150 kHz were associated with less damage. However, when the number of HF-EP bursts was increased to 60, myocardial damage was comparable to that of the monophasic group. HF-EP protocols were associated with attenuated collateral muscle contractions. This study shows that HF-EP is feasible and effective and that pulse frequency has a significant effect on extent of ablation.


Asunto(s)
Electroporación , Corazón , Animales , Miocardio
13.
Comput Methods Programs Biomed ; 197: 105682, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32795723

RESUMEN

BACKGROUND AND OBJECTIVES: Electroporation is the phenomenon by which cell membrane permeability to ions and macromolecules is increased when the cell is briefly exposed to high electric fields. In electroporation-based treatments, such exposure is typically performed by delivering high voltage pulses across needle electrodes in tissue. For a given tissue and pulsing protocol, an electric field magnitude threshold exists that must be overreached for treatment efficacy. However, it is hard to preoperatively infer the treatment volume because the electric field distribution intricately depends on the electrodes' positioning and length, the applied voltage, and the electric conductivity of the treated tissues. For illustrating such dependencies, we have created EView (https://eview.upf.edu), a web platform that estimates the electric field distribution for arbitrary needle electrode locations and orientations and overlays it on 3D medical images. METHODS: A client-server approach has been implemented to let the user set the electrode configuration easily on the web browser, whereas the simulation is computed on a dedicated server. By means of the finite element method, the electric field is solved in a 3D volume. For the sake of simplicity, only a homogeneous tissue is modeled, assuming the same properties for healthy and pathologic tissues. The non-linear dependence of tissue conductivity on the electric field due to the electroporation effect is modeled. The implemented model has been validated against a state of the art finite element solver, and the server has undergone a heavy load test to ensure reliability and to report execution times. RESULTS: The electric field is rapidly computed for any electrode and tissue configuration, and alternative setups can be easily compared. The platform provides the same results as the state of the art finite element solver (Dice = 98.3 ± 0.4%). During the high load test, the server remained responsive. Simulations are computed in less than 2 min for simple cases consisting of two electrodes and take up to 40 min for complex scenarios consisting of 6 electrodes. CONCLUSIONS: With this free platform we provide expert and non-expert electroporation users a way to rapidly model the electric field distribution for arbitrary electrode configurations.


Asunto(s)
Simulación por Computador , Electroquimioterapia , Electroporación , Conductividad Eléctrica , Electrodos , Reproducibilidad de los Resultados
14.
IEEE Trans Biomed Circuits Syst ; 14(4): 867-878, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32746346

RESUMEN

Sensing implants that can be deployed by catheterization or by injection are preferable over implants requiring invasive surgery. However, present powering methods for active implants and present interrogation methods for passive implants require bulky parts within the implants that hinder the development of such minimally invasive devices. In this article, we propose a novel approach that potentially enables the development of passive sensing systems overcoming the limitations of previous implantable sensing systems in terms of miniaturization. In this approach implants are shaped as thread-like devices suitable for implantation by injection. Their basic structure consists of a thin elongated body with two electrodes at opposite ends and a simple and small circuit made up of a diode, a capacitor and a resistor. The interrogation method to obtain measurements from the implants consists in applying innocuous bursts of high frequency (≥1 MHz) alternating current that reach the implants by volume conduction and in capturing and processing the voltage signals that the implants produce after the bursts. As proof-of-concept, and for illustrating how to put in practice this novel approach, here we describe the development and characterization of a system for measuring the conductivity of tissues surrounding the implant. We also describe the implementation and the in vitro validation of a 0.95 mm-thick, flexible injectable implant made of off-the-shelf components. For conductivities ranging from about 0.2 to 0.8 S/m, when compared to a commercial conductivity meter, the accuracy of the implemented system was about ±10%.


Asunto(s)
Conductividad Eléctrica , Miniaturización/instrumentación , Monitoreo Fisiológico/instrumentación , Prótesis e Implantes , Electrónica Médica , Humanos , Pierna/fisiología , Músculo Esquelético/fisiología , Diseño de Prótesis , Transductores
15.
Bioelectrochemistry ; 136: 107624, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32784104

RESUMEN

Pulsed radiofrequency (PRF) treatments for chronic pain consist in the delivery of a train of sinusoidal electric bursts to the targeted nerve. Despite numerous clinical evidence of its efficiency, the mechanism of action of PRF remains unclear. Since most of the reported biological effects of PRF can be initiated by a calcium influx into the neurons, we hypothesized that PRF may induce a mild electroporation effect causing a calcium uptake. To test this hypothesis, HEK-293 cells were exposed to PRF bursts and cytosolic calcium and Yo-Pro-1 uptake were monitored. After a single burst, calcium peaks were observed for electric fields above 480 V/cm while the uptake of Yo-pro-1 was insignificant. After a train of 120 bursts, the electric fields required to induce a calcium and Yo-pro-1 uptake decreased to 330 V/cm and 880 V/cm respectively. Calcium peaks were not detected when cells were treated in calcium free media. The temperature increase during the treatments was lower than 5 °C in all cases. Finally, the cell response for different burst frequencies and extracellular media conductivities correlated with the induced transmembrane voltage calculated with a numerical model. Our results support the hypothesis of an electroporation mediated calcium influx.


Asunto(s)
Calcio/metabolismo , Dolor Crónico/terapia , Electroporación/métodos , Tratamiento de Radiofrecuencia Pulsada/métodos , Benzoxazoles/metabolismo , Dolor Crónico/metabolismo , Citosol/metabolismo , Células HEK293 , Humanos , Técnicas In Vitro , Potenciales de la Membrana , Neuronas/metabolismo , Compuestos de Quinolinio/metabolismo , Temperatura
16.
J Neural Eng ; 17(4): 046037, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32717730

RESUMEN

OBJECTIVE: It is known that multi-site interleaved stimulation generates less muscle fatigue compared to single-site synchronous stimulation. However, in the limited number of studies in which intramuscular electrodes were used, the fatigue reduction associated with interleaved stimulation could not consistently be achieved. We hypothesize that this could be due to the inability to place the intramuscular electrodes used in interleaved stimulation in locations that minimize overlap amongst the motor units activated by the electrodes. Our objective in the present study was to use independent intramuscular electrodes to compare fatigue induced by interleaved stimulation with that generated by synchronous stimulation at the same initial force and ripple. APPROACH: In the medial gastrocnemius muscle of an anesthetized rabbit (n = 3), ten intramuscular hook wire electrodes were inserted at different distances from the nerve entry. Overlap was measured using the refractory technique and only three electrodes were found to be highly independent. After ensuring that forces obtained by both stimulation modalities had the same ripple and magnitude, fatigue induced during interleaved stimulation across three independent distal electrodes was compared to that obtained by synchronously delivering pulses to a single proximal electrode. MAIN RESULTS: Contractions evoked by interleaved stimulation exhibited less fatigue than those evoked by synchronous stimulation. Twitch force recruitment curves collected from each of the ten intramuscular electrodes showed frequent intermediate plateaus and the force value at these plateaus decreased as the distance between the electrode and nerve entry increased. SIGNIFICANCE: The results indicate that interleaved intramuscular stimulation is preferred over synchronous intramuscular stimulation when fatigue-resistant and smooth forces are desired. In addition, the results suggest that the large muscle compartments innervated by the primary intramuscular nerve branches give rise to progressively smaller independent compartments in subsequent nerve divisions.


Asunto(s)
Fatiga Muscular , Músculo Esquelético , Animales , Estimulación Eléctrica , Electrodos , Contracción Muscular , Conejos
17.
Ann Biomed Eng ; 48(5): 1451-1462, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32026232

RESUMEN

High-frequency irreversible electroporation (H-FIRE) has emerged as an alternative to conventional irreversible electroporation (IRE) to overcome the issues associated with neuromuscular electrical stimulation that appear in IRE treatments. In H-FIRE, the monopolar pulses typically used in IRE are replaced with bursts of short bipolar pulses. Currently, very little is known regarding how the use of a different waveform affects the cell death dynamics and mechanisms. In this study, human pancreatic adenocarcinoma cells were treated with a typical IRE protocol and various H-FIRE schemes with the same energized time. Cell viability, membrane integrity and Caspase 3/7 activity were assessed at different times after the treatment. In both treatments, we identified two different death dynamics (immediate and delayed) and we quantified the electric field ranges that lead to each of them. While in the typical IRE protocol, the electric field range leading to a delayed cell death is very narrow, this range is wider in H-FIRE and can be increased by reducing the pulse length. Membrane integrity in cells suffering a delayed cell death shows a similar time evolution in all treatments, however, Caspase 3/7 expression was only observed in cells treated with H-FIRE.


Asunto(s)
Muerte Celular , Electroporación/métodos , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Humanos
18.
Bioelectrochemistry ; 133: 107482, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32062417

RESUMEN

Electrolytic Electroporation (E2) is the combination of reversible electroporation and electrolysis. It has been proposed as a novel treatment option to ablate tissue percutaneously. The present in vitro study in cells in suspension was performed to investigate the underlying mechanisms of action of E2. Different types of experiments were performed to isolate the effects of the electrolysis and the electroporation components of the treatment. Additionally, thermal simulations were performed to determine whether significant temperature increase contributes to the effect. The results indicate that E2's cell killing efficacy is due to a combinational effect of electrolysis and reversible electroporation that takes place within the first two minutes after E2 application. The results further show that cell death after E2 treatment is significantly delayed. These observations suggest that cell death is induced in permeabilized cells due to the uptake of electrolysis species. Thermal simulations revealed a significant but innocuous temperature increase.


Asunto(s)
Electrólisis/métodos , Electroporación/métodos , Muerte Celular , Supervivencia Celular , Electrólisis/instrumentación , Electroporación/instrumentación , Diseño de Equipo , Células HEK293 , Humanos
19.
Brain Stimul ; 13(2): 494-498, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31919001

RESUMEN

BACKGROUND: Vagus nerve stimulation (VNS) using non-invasive approaches have attracted great attention due to their anti-epileptic, anti-depressive and pro-cognitive effects. It has been proposed that auricular transcutaneous VNS (atVNS) could benefit intellectual disability disorders, but preclinical data supporting this idea is limited. OBJECTIVE: To develop an atVNS device for mice and to test its efficacy on memory performance in naïve mice and in a mouse model for intellectual disability. METHODS: Naïve outbreed CD-1 mice and a model for fragile X syndrome, the Fmr1 knockout (Fmr1KO), were used to assess the effect of atVNS in the novel object-recognition memory performance. RESULTS: We found that atVNS significantly improves memory persistence in naïve mice. Notably, atVNS was efficacious in normalizing the object-recognition memory deficit in the Fmr1KO model. CONCLUSION: Our data show that atVNS improves memory persistence in naïve mice and in a model of intellectual disability and support further studies taking advantage of preclinical mouse models of cognitive disorders.


Asunto(s)
Discapacidad Intelectual/fisiopatología , Estimulación del Nervio Vago/métodos , Animales , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/terapia , Masculino , Ratones , Estimulación Eléctrica Transcutánea del Nervio/métodos
20.
PLoS One ; 14(8): e0221393, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31437212

RESUMEN

BACKGROUND: The combination of electroporation with electrolysis (E2) has previously been introduced as a novel tissue ablation technique. E2 allows the utilization of a wide parameter range and may therefore be a suitable technology for development of tissue-specific application protocols. Previous studies have implied that it is possible to achieve big lesions in liver in a very short time. The goal of this study was to test a variety of electrode configurations for the E2 application to ablate large tissue volumes. MATERIALS AND METHODS: 27 lesions were performed in healthy porcine liver of five female pigs. Four, two and bipolar electrode-arrays were used to deliver various E2 treatment protocols. Liver was harvested approx. 20h after treatment and examined with H&E and Masson's trichrome staining, and via TUNEL staining for selective specimen. RESULTS: All animals survived the treatments without complications. With four electrodes, a lesion of up to 35x35x35mm volume can be achieved in less than 30s. The prototype bipolar electrode created lesions of 50x18x18mm volume in less than 10s. Parameters for two-electrode ablations with large exposures encompassing large veins were found to be good in terms of vessel preservation, but not optimal to reliably close the gap between the electrodes. CONCLUSION: This study demonstrates the ability to produce large lesions in liver within seconds at lower limits of the E2 parameter space at different electrode configurations. The applicability of E2 for single electrode ablations was demonstrated with bipolar electrodes. Parameters for large 4-electrode ablation volumes were found suitable, while parameters for two electrodes still need optimization. However, since the parameter space of E2 is large, it is possible that for all electrode geometries optimal waveforms and application protocols for specific tissues will emerge with continuing research.


Asunto(s)
Técnicas de Ablación/instrumentación , Electrólisis/instrumentación , Electroporación/instrumentación , Hígado/cirugía , Animales , Electrodos , Electrólisis/métodos , Electroporación/métodos , Diseño de Equipo , Femenino , Inmunohistoquímica , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...