Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mycologia ; 111(3): 445-455, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30964414

RESUMEN

A new Phytophthora species was found associated with gummosis in black wattle plantations in the subtropical, humid, south of Brazil. The new species Phytophthora acaciae is formally named herein based on phylogenetic and morphological analyses. This is the fourth Phytophthora species found from this pathogen complex in black wattle plantations causing gummosis in Brazil. The other three species are P. nicotianae, P. boehmeriae, and P. frigida. Phytophthora acaciae is heterothallic with amphigynous antheridia, noncaducous, papillate sporangia and is placed in the Phytophthora clade 2 based on nuc rDNA internal transcribed spacer (ITS1-5.8S-ITS2 = ITS) sequences. Maximum parsimony and maximum likelihood phylogenetic analyses of P. acaciae isolates based on multigene sequences, including partial DNA sequences of three nuclear protein-coding genes (ß-tubulin, translation elongation factor-1α, and ras-related protein), two mitochondrial protein-coding genes (cytochrome c oxidase subunits I and II), in addition to ITS sequence data, support the delimitation of this new species on Acacia mearnsii from the other previously described clade 2 Phytophthora species. Pathogenicity trial confirmed that the new species causes necrotic lesions on the plant stem, with either the presence or absence of gum.


Asunto(s)
Filogenia , Phytophthora/clasificación , Phytophthora/genética , Enfermedades de las Plantas/microbiología , Animales , Brasil , ADN Ribosómico/genética , ADN Espaciador Ribosómico/genética , Factor 1 de Elongación Peptídica/genética , Phytophthora/patogenicidad , Análisis de Secuencia de ADN , Tubulina (Proteína)/genética
2.
Plant Dis ; 103(1): 59-64, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30422743

RESUMEN

Sensitivity of Botrytis cinerea to seven fungicide chemical classes was determined for 888 isolates collected in 2016 from 47 California strawberry fields. Isolates were collected early season (minimum fungicide exposure) and late season (maximum fungicide exposure) from the same planting block in each field. Resistance was determined using a mycelial growth assay, and variable frequencies of resistance were observed to each fungicide at both sampling times (early season %, late season %): boscalid (12, 35), cyprodinil (12, 46), fenhexamid (53, 91), fludioxonil (1, 4), fluopyram (2, 7), iprodione (25, 8), isofetamid (0, 1), penthiopyrad (8, 25), pyraclostrobin (77, 98), and thiophanate-methyl (81, 96). Analysis of number of chemical class resistances (CCRs) revealed an increasing shift in CCR from the early to late season. Phenotypes of 40 isolates that were resistant or sensitive to different chemical classes were associated with presence or absence of mutations in target genes. Fungicide-resistance phenotypes determined in the mycelial growth assay closely matched (93.8%) the genotype observed. Previously described resistance-conferring mutations were found for each gene. A survey of fungicide use from 32 of the sampled fields revealed an average of 15 applications of gray mold-labeled fungicides per season at an average interval of 12 days. The most frequently applied fungicides (average number of applications during the 2016 season) were captan (7.3), pyraclostrobin (2.5), cyprodinil (2.3), fludioxonil (2.3), boscalid (1.8), and fenhexamid (1.4). Multifungicide resistance is widespread in California. Resistance management tactics that reduce selection pressure by limiting fungicide use, rotating among Fungicide Resistance Action Committee codes, and mixing/rotating site-specific fungicides with multisite fungicides need to be improved and implemented.


Asunto(s)
Fragaria , Botrytis , California , Farmacorresistencia Fúngica , Fungicidas Industriales , Enfermedades de las Plantas , Estaciones del Año
3.
Plant Dis ; 102(9): 1687-1695, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30125151

RESUMEN

Anthracnose crown rot of strawberry, caused by Colletotrichum acutatum, is an important disease affecting California nursery and fruit production. Preplant dip treatments of transplants with fludioxonil-cyprodinil or azoxystrobin are industry standards for managing the disease and have been used extensively. Following reports of reduced efficacy of azoxystrobin in the field, high levels of quinone outside inhibitor (QoI) resistance were detected in California isolates of the pathogen. Resistance was associated with the G143A mutation in the cytochrome b gene, similar to a previous report from Florida, and there were no detected fitness penalties in pathogenicity or virulence. Therefore, several alternative fungicides were investigated in laboratory and field studies. Subsequently, the new biofungicide natamycin was identified. Baseline sensitivities of 74 isolates of C. acutatum to natamycin were determined to be unimodal, with a range from 0.526 to 1.996 µg/ml (mean 0.973 µg/ml). Although this toxicity was considerably lower than that of azoxystrobin (using sensitive isolates), fludioxonil, or cyprodinil, dip treatments of transplants with natamycin (at 500 or 1000 mg/liter) were highly effective. Disease severity and plant mortality in field studies with inoculated transplants were reduced to similarly low levels as treatments containing fludioxonil, whereas azoxystrobin failed in inoculations with QoI-resistant isolates of C. acutatum. Fruit yield was also significantly increased by natamycin as compared with the inoculated control. Differences in disease susceptibility were observed among cultivars evaluated, with Monterey and Portola more susceptible than Fronteras. Natamycin has a unique mode of action that is different from other fungicides registered on strawberry and, based on this research, was registered in the United States as a preplant, biofungicide dip treatment of strawberry transplants for management of anthracnose crown rot.


Asunto(s)
Antifúngicos/farmacología , Colletotrichum/efectos de los fármacos , Fragaria/microbiología , Fungicidas Industriales/farmacología , Natamicina/farmacología , Enfermedades de las Plantas/prevención & control , California , Colletotrichum/genética , Dioxoles/farmacología , Farmacorresistencia Fúngica , Frutas/microbiología , Mutación , Enfermedades de las Plantas/microbiología , Pirimidinas/farmacología , Pirroles/farmacología , Estrobilurinas/farmacología
4.
Plant Dis ; 102(6): 1108-1114, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30673436

RESUMEN

Black shank disease of tobacco, caused by the oomycete Phytophthora nicotianae, is a major threat to production in the United States and tobacco-producing areas worldwide. In a statewide survey of North Carolina, the rapid shift from race 0 to race 1 was documented. Collected pathogen isolates were characterized phenotypically for mating type and mefenoxam sensitivity, and genotypically by comparing sequences from three cytoplasmic and two nuclear regions. Both the A1 and A2 mating types were found throughout the state. When both mating types were recovered from the same field, pairings of isolates yielded viable oospores, indicating for the first time the potential for sexual sporulation by P. nicotianae in natural populations. Because the loss of complete resistance required a renewed use of the fungicide mefenoxam, a subset of the survey isolates was screened for sensitivity to the fungicide. All isolates were sensitive, with a mean effective concentration to inhibit 50% of hyphal growth of 0.4 µg/ml that was similar across mating types and races. Molecular characterization of 226 isolates revealed that the pathogen exists as multiple clonal types within the state. Genetic diversity among the pathogen population and the potential for sexual recombination may help explain the ability of the pathogen to rapidly adapt to host resistance genes.


Asunto(s)
Nicotiana/microbiología , Phytophthora/fisiología , Agricultura , Alanina/análogos & derivados , Alanina/farmacología , Farmacorresistencia Fúngica , Fungicidas Industriales/farmacología , North Carolina , Phytophthora/efectos de los fármacos
5.
Mycologia ; 103(2): 341-50, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21193600

RESUMEN

A root rot disease of cultivated tobacco called yellow stunt has been observed in the burley tobacco production areas of Brazil since the early 1990s. Root infecting fungi and straminipiles were isolated from the roots of diseased tobacco plants, including a semi-papillate, homothallic, slow growing Phytophthora species. Pathogenicity trials confirmed that Phytophthora sp. caused root rot and stunting of burley and flue-cured tobaccos. Morphological characteristics of the asexual and sexual stages of this organism did not match any reported Phytophthora species and were very different from the widely known tobacco black shank pathogen P. nicotianae. Phylogenetic analysis based on sequences of the internal transcribed spacer rDNA, ß-tubulin and translation elongation factor 1-α regions indicated that this organism represents a previously unreported Phytophthora species that is significantly supported in clade 2 and most closely related to P. capsici. However P. glovera differs from P. capsici in a number of morphological characters, most significantly P. glovera is homothallic and produces both paragynous and amphigynous antheridia while P. capsici is heterothallic and produces only amphigynous antheridia. In this paper we confirmed pathogenicity of this species on tobacco and describe the morphological and molecular characteristics of Phytophthora glovera sp. nov.


Asunto(s)
Nicotiana/microbiología , Phytophthora/crecimiento & desarrollo , Phytophthora/genética , Enfermedades de las Plantas/microbiología , Brasil , Proteínas Fúngicas/genética , Datos de Secuencia Molecular , Filogenia , Phytophthora/clasificación , Phytophthora/aislamiento & purificación , Tubulina (Proteína)/genética
6.
Phytopathology ; 100(8): 732-7, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20626276

RESUMEN

Sequences of selected marker loci have been widely used for the identification of specific pathogens and the development of sequence-based diagnostic methods. Although such approaches offer several advantages over traditional culture-based methods for pathogen diagnosis and identification, they have their own pitfalls. These include erroneous and incomplete data in reference databases, poor or oversimplified interpretation of search results, and problems associated with defining species boundaries. In this letter, we outline the potential benefits and drawbacks of using sequence data for identification and taxonomic deduction of plant-pathogenic fungi and oomycetes, using phytophthora as a primary example. We also discuss potential remedies for these pitfalls and address why coordinated community efforts are essential to make such remedies more efficient and robust.


Asunto(s)
Hongos/clasificación , Phytophthora/clasificación , Enfermedades de las Plantas/microbiología , ADN de Algas , ADN de Hongos , Bases de Datos de Ácidos Nucleicos , Hongos/genética , Phytophthora/genética , Análisis de Secuencia de ADN
7.
Plant Dis ; 94(5): 515-520, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-30754463

RESUMEN

A tomato (Solanum lycopersicum) foliar blight disease of unknown etiology was observed in North Carolina (NC) during 2005 to 2006. Symptoms included necrotic lesions and blighted leaves, with signs of white mycelial growth on abaxial leaf surfaces. The morphology of isolates from symptomatic leaves was consistent with that of Rhizoctonia solani. Because the pattern of symptom expression suggested that basidiospores were the primary inoculum source, Koch's postulates were fulfilled using a method to generate basidiospores in planta. Isolates were characterized by morphology, DNA sequence analysis, hyphal anastomosis, and somatic hyphal interactions. Phylogenetic analyses and hyphal anastomosis criteria support placement of the isolates in R. solani anastomosis group 3 (AG-3). Tomato foliar blight isolates from NC form a single phylogenetic group with tomato isolates of R. solani AG-3 from Japan and are more closely related to R. solani AG-3 isolates from potato than tobacco. Isolates exhibited both compatible and incompatible hyphal interactions when paired in vitro. To our knowledge, this is the first detailed report of tomato foliar blight caused by R. solani AG-3 in North America. A comprehensive description of the technique employed for producing basidiospores is presented with potential utility for understanding foliar disease etiology in other Rhizoctonia pathosystems.

8.
Plant Dis ; 92(6): 966-972, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30769728

RESUMEN

Phytophthora spp. represent a serious threat to agricultural and ecological systems. Many novel Phytophthora spp. have been reported in recent years, which is indicative of our limited understanding of the ecology and diversity of Phytophthora spp. in nature. Systematic cataloging of genotypic and phenotypic information on isolates of previously described species serves as a baseline for identification, classification, and risk assessment of new Phytophthora isolates. The Phytophthora Database (PD) was established to catalog such data in a web-accessible and searchable format. To support the identification of new Phytophthora isolates via comparison of their sequences at one or more loci with the corresponding sequences derived from the isolates archived in the PD, we generated and deposited sequence data from more than 1,500 isolates representing the known diversity in the genus. Data search and analysis tools in the PD include BLAST, Phyloviewer (a program for building phylogenetic trees using sequences of selected isolates), and Virtual Gel (a program for generating expected restriction patterns for given sequences). The PD also provides a customized means of storing and sharing data via the web. The PD serves as a model that easily can be adopted to develop databases for other important pathogen groups.

9.
Science ; 313(5791): 1261-6, 2006 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-16946064

RESUMEN

Draft genome sequences have been determined for the soybean pathogen Phytophthora sojae and the sudden oak death pathogen Phytophthora ramorum. Oömycetes such as these Phytophthora species share the kingdom Stramenopila with photosynthetic algae such as diatoms, and the presence of many Phytophthora genes of probable phototroph origin supports a photosynthetic ancestry for the stramenopiles. Comparison of the two species' genomes reveals a rapid expansion and diversification of many protein families associated with plant infection such as hydrolases, ABC transporters, protein toxins, proteinase inhibitors, and, in particular, a superfamily of 700 proteins with similarity to known oömycete avirulence genes.


Asunto(s)
Evolución Biológica , ADN de Algas/genética , Genoma , Phytophthora/genética , Phytophthora/patogenicidad , Proteínas Algáceas/genética , Proteínas Algáceas/fisiología , Genes , Hidrolasas/genética , Hidrolasas/metabolismo , Fotosíntesis/genética , Filogenia , Mapeo Físico de Cromosoma , Phytophthora/clasificación , Phytophthora/fisiología , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Secuencias Repetitivas de Ácidos Nucleicos , Análisis de Secuencia de ADN , Simbiosis , Toxinas Biológicas/genética
10.
Phytopathology ; 96(9): 920-5, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18944046

RESUMEN

ABSTRACT Plant pathogen culture collections are essential resources in our fight against plant disease and for connecting discoveries of the present with established knowledge of the past. However, available infrastructure in support of culture collections is in serious need of improvement, and we continually face the risk of losing many of these collections. As novel and reemerging plant pathogens threaten agriculture, their timely identification and monitoring depends on rapid access to cultures representing the known diversity of plant pathogens along with genotypic, phenotypic, and epidemiological data associated with them. Archiving such data in a format that can be easily accessed and searched is essential for rapid assessment of potential risk and can help track the change and movement of pathogens. The underexplored pathogen diversity in nature further underscores the importance of cataloguing pathogen cultures. Realizing the potential of pathogen genomics as a foundation for developing effective disease control also hinges on how effectively we use the sequenced isolate as a reference to understand the genetic and phenotypic diversity within a pathogen species. In this letter, we propose a number of measures for improving pathogen culture collections.

11.
Mycol Res ; 108(Pt 4): 378-92, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15209278

RESUMEN

The genetic structure within and between USA and European populations of the emerging phytopathogen Phytophthora ramorum was examined. Four primer combinations were used for amplified fragment length polymorphism (AFLP) fingerprinting of 67 USA isolates from California and Oregon, and 18 European isolates from Belgium, Germany, The Netherlands, Spain and the UK. In addition, three DNA regions (ITS, cox II, and nad 5) of additional Phytophthora species were amplified by polymerase chain reaction, sequenced, and analysed to provide better phylogenetic understanding of P. ramorum within the genus Phytophthora. AFLP banding patterns indicate that the 85 isolates form two distinct lineages within a monophyletic group, distinct from the closely related outgroup species P. lateralis. With the exception of two isolates from an Oregon nursery, European and USA isolates clustered separately within individual clades. The AFLP profiles also indicate that a single clonal lineage dominates the North American population, while the European population consists of an array of mainly unique, closely related AFLP types. Sequences from the three DNA regions were identical among all P. ramorum isolates, and phylogenetic analysis indicates that P. ramorum is closely related to P. lateralis and P. hibernalis.


Asunto(s)
Phytophthora/genética , Secuencia de Bases , Análisis por Conglomerados , ADN/química , ADN/genética , Dermatoglifia del ADN , ADN Intergénico/química , ADN Intergénico/genética , Europa (Continente) , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular , Filogenia , Phytophthora/clasificación , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/química , Proteínas de Plantas/genética , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción , Prostaglandina-Endoperóxido Sintasas/química , Prostaglandina-Endoperóxido Sintasas/genética , Quercus , Alineación de Secuencia , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...