Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 242(3): 1146-1155, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38462819

RESUMEN

In Arabidopsis thaliana, heterodimers comprising two bHLH family proteins, LONESOME HIGHWAY (LHW) and TARGET OF MONOPTEROS5 (TMO5) or its homolog TMO5-LIKE 1 (T5L1) control vascular development in the root apical meristem (RAM). The LHW-TMO5/T5L1 complex regulates vascular cell proliferation, vascular pattern organization, and xylem vessel differentiation; however, the mechanism of preparation for xylem vessel differentiation in the RAM remains elusive. We examined the relationship between LHW-T5L1 and VASCULAR-RELATED NAC-DOMAIN (VND) genes, which are key regulators of vessel differentiation, using reverse genetics approaches. LHW-T5L1 upregulated the expression of VND1, VND2, VND3, VND6, and VND7 but not that of other VNDs. The expression of VND1-VND3 in the RAM was decreased in lhw. In vnd1 vnd2 vnd3 triple loss-of-function mutant roots, metaxylem differentiation was delayed, and VND6 and VND7 expression was reduced. Furthermore, transcriptome analysis of VND1-overexpressing cells revealed that VND1 upregulates genes involved in the synthesis of secondary cell wall components. These results suggest that LHW-T5L1 upregulates VND1-VND3 at the early stages of vascular development in the RAM, and VNDs promote a predifferentiation state for xylem vessels by triggering low levels of VND6 and VND7 as well as genes for the synthesis of secondary cell wall materials.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Meristema/metabolismo , Transactivadores/metabolismo , Xilema/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(15): e2216632120, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37011193

RESUMEN

Spatiotemporal control of cell division in the meristem is vital for plant growth. In the stele of the root apical meristem (RAM), procambial cells divide periclinally to increase the number of vascular cell files. Class III homeodomain leucine zipper (HD-ZIP III) proteins are key transcriptional regulators of RAM development and suppress the periclinal division of vascular cells in the stele; however, the mechanism underlying the regulation of vascular cell division by HD-ZIP III transcription factors (TFs) remains largely unknown. Here, we performed transcriptome analysis to identify downstream genes of HD-ZIP III and found that HD-ZIP III TFs positively regulate brassinosteroid biosynthesis-related genes, such as CONSTITUTIVE PHOTOMORPHOGENIC DWARF (CPD), in vascular cells. Introduction of pREVOLUTA::CPD in a quadruple loss-of-function mutant of HD-ZIP III genes partly rescued the phenotype in terms of the vascular defect in the RAM. Treatment of a quadruple loss-of-function mutant, a gain-of-function mutant of HD-ZIP III, and the wild type with brassinosteroid and a brassinosteroid synthesis inhibitor also indicated that HD-ZIP III TFs act together to suppress vascular cell division by increasing brassinosteroid levels. Furthermore, brassinosteroid application suppressed the cytokinin response in vascular cells. Together, our findings suggest that the suppression of vascular cell division by HD-ZIP III TFs is caused, at least in part, by the increase in brassinosteroid levels through the transcriptional activation of brassinosteroid biosynthesis genes in the vascular cells of the RAM. This elevated brassinosteroid level suppresses cytokinin response in vascular cells, inhibiting vascular cell division in the RAM.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Meristema , Brasinoesteroides/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Leucina Zippers/genética , Citocininas/metabolismo , División Celular , Regulación de la Expresión Génica de las Plantas
3.
Methods Mol Biol ; 2149: 89-109, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32617931

RESUMEN

Plant tissue cultures are an efficient system to study cell wall biosynthesis in living cells in vivo. Tissue cultures also provide cells and culture medium from which enzymes and cell wall polymers can easily be separated for further studies. Tissue cultures with tracheary element differentiation or extracellular lignin formation have provided useful information related to several aspects of xylem and lignin formation. In this chapter, methods for nutrient medium preparation and callus culture initiation and its maintenance as well as those for protoplast isolation and viability observation are described. As a case study, we describe the establishment of a xylogenic culture of Zinnia elegans mesophyll cells.


Asunto(s)
Plantas/metabolismo , Técnicas de Cultivo de Tejidos/métodos , Asteraceae/citología , Diferenciación Celular , División Celular , Pared Celular/metabolismo , Células Cultivadas , Germinación , Células del Mesófilo/citología , Células del Mesófilo/metabolismo , Hojas de la Planta/citología , Protoplastos/metabolismo , Esterilización , Nicotiana/citología
4.
Plant Cell Physiol ; 60(12): 2684-2691, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31392340

RESUMEN

The phytohormone auxin governs various developmental processes in plants including vascular formation. Auxin transport and biosynthesis are important factors in determining auxin distribution in tissues. Although the role of auxin transport in vein pattern formation is widely recognized, that of auxin biosynthesis in vascular development is poorly understood. Heterodimer complexes comprising two basic helix-loop-helix protein families, LONESOME HIGHWAY (LHW) and TARGET OF MONOPTEROS5 (TMO5)/TMO5-LIKE1 (T5L1), are master transcriptional regulators of the initial process of vascular development. The LHW-TMO5/T5L1 dimers regulate vascular initial cell production, vascular cell proliferation and xylem fate determination in the embryo and root apical meristem (RAM). In this study, we investigated the function of local auxin biosynthesis in initial vascular development in RAM. Results showed that LHW-T5L1 upregulated the expression of YUCCA4 (YUC4), a key auxin biosynthesis gene. The expression of YUC4 was essential for promoting xylem differentiation and vascular cell proliferation in RAM. Conversely, auxin biosynthesis was required for maintaining the expression levels of LHW, TMO5/T5L1 and their targets. Our results suggest that local auxin biosynthesis forms a positive feedback loop for fine-tuning the level of LHW-TMO5/T5L1, which is necessary for initiating vascular development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Regulación de la Expresión Génica de las Plantas , Meristema/metabolismo , Raíces de Plantas/metabolismo , Xilema/metabolismo
5.
Plant Cell Physiol ; 59(5): 989-996, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29444288

RESUMEN

Xylem includes xylem parenchyma cells, fibers and tracheary elements. Differentiation of tracheary elements is an irreversible process that is controlled by the master regulator VASCULAR-RELATED NAC-DOMAIN 7 (VND7). Molecular events occurring downstream of VND7 are well understood, but little is known regarding upstream regulation of VND7. In this study, we identified LOB DOMAIN-CONTAINING PROTEIN 15 (LBD15)/ASYMMETRIC LEAVES2-LIKE (ASL11) as a regulator of VND7. LBD15 was expressed in immature vascular cells and positively regulated both VND7 expression and differentiation of tracheary elements. LBD15 directly associated with the upstream sequence of VND7 and positively regulated VND7 expression. A 25 bp upstream sequence was essential for VND7 expression in the elongation zone of Arabidopsis roots. Taken together with previous studies identifying LBD15 as a target of VND7, we propose that LBD15 acts in a positive feedback regulation system that promotes and accelerates VND7 expression during the initiation phase of tracheary element differentiation in roots.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción/metabolismo , Xilema/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Secuencia de Bases , Regulación de la Expresión Génica de las Plantas , Fenotipo , Plantas Modificadas Genéticamente , Dominios Proteicos , Factores de Transcripción/genética
6.
Plant Biotechnol J ; 16(2): 451-458, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28664596

RESUMEN

Tissue-specific overexpression of useful genes, which we can design according to their cause-and-effect relationships, often gives valuable gain-of-function phenotypes. To develop genetic tools in woody biomass engineering, we produced a collection of Arabidopsis lines that possess chimeric genes of a promoter of an early xylem differentiation stage-specific gene, Arabidopsis Tracheary Element Differentiation-related 4 (AtTED4) and late xylem development-associated genes, many of which are uncharacterized. The AtTED4 promoter directed the expected expression of transgenes in developing vascular tissues from young to mature stage. Of T2 lines examined, 42%, 49% and 9% were judged as lines with the nonrepeat type insertion, the simple repeat type insertion and the other repeat type insertion of transgenes. In 174 T3 lines, overexpression lines were confirmed for 37 genes, whereas only cosuppression lines were produced for eight genes. The AtTED4 promoter activity was high enough to overexpress a wide range of genes over wild-type expression levels, even though the wild-type expression is much higher than AtTED4 expression for several genes. As a typical example, we investigated phenotypes of pAtTED4::At5g60490 plants, in which both overexpression and cosuppression lines were included. Overexpression but not cosuppression lines showed accelerated xylem development, suggesting the positive role of At5g60490 in xylem development. Taken together, this study provides valuable results about behaviours of various genes expressed under an early xylem-specific promoter and about usefulness of their lines as genetic tools in woody biomass engineering.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Plantas Modificadas Genéticamente/citología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Regiones Promotoras Genéticas/genética , Interferencia de ARN , Xilema/citología , Xilema/genética , Xilema/metabolismo
7.
Curr Biol ; 25(23): 3144-50, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26616019

RESUMEN

Controlling cell division and differentiation in meristems is essential for proper plant growth. Two bHLH heterodimers consisting of LONESOME HIGHWAY (LHW) and TARGET OF MONOPTEROS 5 (TMO5)/TMO5-LIKE1 (T5L1) regulate periclinal cell division in vascular cells in the root apical meristem (RAM). In this study, we further investigated the functions of LHW-T5L1, finding that in addition to controlling cell division, this complex regulates xylem differentiation in the RAM via a novel negative regulatory system. LHW-T5L1 upregulated the thermospermine synthase gene ACAULIS5 (ACL5), as well as SUPPRESSOR OF ACAULIS5 LIKE3 (SACL3), which encodes a bHLH protein, in the RAM. The SACL3 promoter sequence contains a conserved upstream open reading frame (uORF), which blocked translation of the main SACL3 ORF in the absence of thermospermine. Thermospermine eliminated the negative effect of uORF and enhanced SACL3 production. Further genetic and molecular biological analyses indicated that ACL5 and SACL3 suppress the function of LHW-T5L1 through a protein-protein interaction between LHW and SACL3. Finally, we showed that a negative feedback loop consisting of LHW-T5L1, ACL5, SACL3, and LHW-SACL3 contributes to maintain RAM size and proper root growth. These findings suggest that a negative feedback loop regulates the LHW-T5L1 output level to coordinate cell division and differentiation in a cell-autonomous manner.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación de la Expresión Génica de las Plantas , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , División Celular , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Xilema/genética , Xilema/crecimiento & desarrollo , Xilema/metabolismo
8.
Curr Biol ; 24(17): 2053-8, 2014 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-25131670

RESUMEN

Higher organisms possess mechanisms to maintain stem cells' proliferative and pluripotent states in stem cell niches [1]. Plants possess two types of stem cell niches in the root and shoot apical meristems, where regulatory interactions exist between stem cells and organizing cells. Recent studies provided new insights into the molecular mechanism of stem cell maintenance [2-4]. However, earlier and more essential developmental events such as the acquisition of stem cell proliferative activity are still unknown. In vascular tissues, procambial cells function as stem cells and differentiate into xylem, phloem, and procambium. Procambial cell proliferation starts at root apical meristem (RAM) postembryonically; therefore, procambial cell development in RAM is a good model for investigating the regulation of stem cell proliferation. LONESOME HIGHWAY (LHW) and TARGET OF MONOPTEROS5 (TMO5), as well as its homolog, TMO5-LIKE1 (T5L1), encode bHLH proteins that function as heterodimers (LHW-TMO5 and LHW-T5L1) in vascular tissue organization [5-7]. LHW-T5L1 promotes vascular-cell-specific proliferation in RAM [7]. Here, we demonstrate that LHW-T5L1 promotes expression of key cytokinin production genes, including LONELY GUY3 (LOG3) and LOG4, in xylem precursor cells, resulting in elevated cytokinin levels in the surrounding cells. LHW-T5L1 can also promote expression of AHP6, which suppresses cytokinin signaling and then maintains xylem precursor cells at a nondividing state. Our results indicate that LHW-T5L1 establishes xylem precursor cells as a signal center that promotes procambial-cell-specific proliferation through cytokinin response.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , División Celular , Regulación de la Expresión Génica de las Plantas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Citocininas/genética , Citocininas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Floema/citología , Floema/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Análisis de Secuencia de ADN , Células Madre/metabolismo , Xilema/citología , Xilema/crecimiento & desarrollo
9.
Plant Cell Physiol ; 52(6): 1095-106, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21558309

RESUMEN

In higher plants, many extracellular proteins are involved in developmental processes, including cell-cell signaling and cell wall construction. Xylogen is an extracellular arabinogalactan protein (AGP) isolated from Zinnia elegans xylogenic culture medium, which promotes xylem cell differentiation. Xylogen has a unique structure, containing a non-specific lipid transfer protein (nsLTP) domain and AGP domains. We searched for xylogen-type genes in the genomes of land plants, including Arabidopsis thaliana, to further our knowledge of xylogen-type genes as functional extracellular proteins in plants. We found that many xylogen-type genes, including 13 Arabidopsis genes, comprise a gene family in land plants, including Populus trichocarpa, Vitis vinifera, Lotus japonicus, Oryza sativa, Selaginella moellendorffii and Physcomitrella patens. The genes shared an N-terminal signal peptide sequence, a distinct nsLTP domain, one or more AGP domains and a glycosylphosphatidylinositol (GPI)-anchored sequence. We analyzed transgenic plants harboring promoter::GUS (ß-glucuronidase) constructs to test expression of the 13 Arabidopsis xylogen-type genes, and detected a diversity of gene family members with related expression patterns. AtXYP2 was the best candidate as the Arabidopsis counterpart of the Zinnia xylogen gene. We observed two distinct expression patterns for several genes, with some anther specific and others preferentially expressed in the endodermis/pericycle. We conclude that xylogen-type genes, which may have diverse functions, form a novel chimeric AGP gene family with a distinct nsLTP domain.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Perfilación de la Expresión Génica , Familia de Multigenes , Proteoglicanos/genética , Arabidopsis/metabolismo , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Glicosilfosfatidilinositoles/metabolismo , Filogenia , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Regiones Promotoras Genéticas , Señales de Clasificación de Proteína
10.
Methods Mol Biol ; 715: 1-20, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21222073

RESUMEN

Plant tissue cultures are an efficient system to study cell wall biosynthesis in living cells in vivo. Tissue cultures also provide cells and culture medium where enzymes and cell wall polymers can easily be separated for further studies. Tissue cultures with tracheary element differentiation or extracellular lignin formation have provided useful information related to several aspects of xylem and lignin formation. In this chapter, methods for nutrient medium preparation, callus culture initiation, and its maintenance, as well as those for protoplast isolation and viability observation, are described. As a case study, we describe the establishment of a xylogenic culture of Zinnia elegans mesophyll cells.


Asunto(s)
Asteraceae/citología , Asteraceae/crecimiento & desarrollo , Estructuras de las Plantas/crecimiento & desarrollo , Asteraceae/embriología , Diferenciación Celular , División Celular , Medios de Cultivo , Técnicas de Cultivo , Germinación , Células del Mesófilo/fisiología , Reguladores del Crecimiento de las Plantas , Protoplastos/fisiología , Semillas/crecimiento & desarrollo , Esterilización/métodos
11.
Plant Physiol ; 150(1): 437-47, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19270060

RESUMEN

Phytosulfokine (PSK) is a sulfated peptide hormone required for the proliferation and differentiation of plant cells. Here, we characterize the physiological roles of PSK in transdifferentiation of isolated mesophyll cells of zinnia (Zinnia elegans 'Canary Bird') into tracheary elements (TEs). Transcripts for a zinnia PSK precursor gene, ZePSK1, show two peaks of expression during TE differentiation; the first accumulation is transiently induced in response to wounding at 24 h of culture, and the second accumulation is induced in the final stage of TE differentiation and is dependent on endogenous brassinosteroids. Chlorate, a potent inhibitor of peptide sulfation, is successfully applied as an inhibitor of PSK action. Chlorate significantly suppresses TE differentiation. The chlorate-induced suppression of TE differentiation is overcome by exogenously applied PSK. In the presence of chlorate, expression of stress-related genes for proteinase inhibitors and a pathogenesis-related protein is enhanced and changed from a transient to a continuous pattern. On the contrary, administration of PSK significantly reduces the accumulation of transcripts for the stress-related genes. Even in the absence of auxin and cytokinin, addition of PSK suppresses stress-related gene expression. Microarray analysis reveals 66 genes down-regulated and 42 genes up-regulated in the presence of PSK. The large majority of down-regulated genes show significant similarity to various families of stress-related proteins, including chitinases, phenylpropanoid biosynthesis enzymes, 1-aminocyclopropane-1-carboxylic acid synthase, and receptor-like protein kinases. These results suggest the involvement of PSK in the attenuation of stress response and healing of wound-activated cells during the early stage of TE differentiation.


Asunto(s)
Asteraceae/fisiología , Diferenciación Celular/fisiología , Reguladores del Crecimiento de las Plantas/fisiología , Proteínas de Plantas/fisiología , Precursores de Proteínas/fisiología , Estrés Fisiológico , Secuencia de Aminoácidos , Asteraceae/citología , Asteraceae/efectos de los fármacos , Asteraceae/crecimiento & desarrollo , Secuencia de Bases , Diferenciación Celular/efectos de los fármacos , Transdiferenciación Celular , Cloratos/farmacología , Expresión Génica/efectos de los fármacos , Perfilación de la Expresión Génica , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Reguladores del Crecimiento de las Plantas/química , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/química , Proteínas de Plantas/genética , Precursores de Proteínas/química , Precursores de Proteínas/genética
12.
Plant Mol Biol ; 70(4): 457-69, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19326244

RESUMEN

Auxin is essential for the formation of the vascular system. We previously reported that a polar auxin transport inhibitor, 1-N-naphthylphthalamic acid (NPA) decreased intracellular auxin levels and prevented tracheary element (TE) differentiation from isolated Zinnia mesophyll cells, but that additional auxin, 1-naphthaleneacetic acid (NAA) overcame this inhibition. To understand the role of auxin in gene regulation during TE differentiation, we performed microarray analysis of genes expressed in NPA-treated cells and NPA-NAA-treated cells. The systematic gene expression analysis revealed that NAA promoted the expression of genes related to auxin signaling and transcription factors that are known to be key regulators of differentiation of procambial and xylem precursor cells. NAA also promoted the expression of genes related to biosynthesis and metabolism of other plant hormones, such as cytokinin, gibberellin and brassinosteroid. Interestingly, detailed analysis showed that NAA rapidly induces the expression of auxin carrier gene homologues. It suggested a positive feedback loop for auxin-regulating vascular differentiation. Based on these results, we discuss the auxin function in early processes of transdifferentiation into TEs.


Asunto(s)
Transdiferenciación Celular/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Hojas de la Planta/citología , Xilema/citología , Ácido Abscísico/biosíntesis , Asteraceae/citología , Asteraceae/efectos de los fármacos , Asteraceae/genética , Brasinoesteroides , Proteínas Portadoras/clasificación , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Transdiferenciación Celular/genética , Células Cultivadas , Colestanoles/metabolismo , Análisis por Conglomerados , Ciclopentanos/metabolismo , Citocininas/biosíntesis , Etilenos/biosíntesis , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Giberelinas/biosíntesis , Datos de Secuencia Molecular , Ácidos Naftalenoacéticos/farmacología , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Oxilipinas/metabolismo , Filogenia , Fitosteroles/biosíntesis , Reguladores del Crecimiento de las Plantas/farmacología , Hojas de la Planta/genética , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Esteroides Heterocíclicos/metabolismo , Xilema/genética
13.
Plant Cell Physiol ; 49(11): 1752-7, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18854335

RESUMEN

Arabidopsis sol2 mutants showed CLV3 peptide resistance. Twenty-six synthetic CLE peptides were examined in the clv1, clv2 and sol2 mutants. sol2 showed different levels of resistance to the various peptides, and the spectrum of peptide resistance was quite similar to that of clv2. SOL2 encoded a receptor-like kinase protein which is identical to CORYNE (CRN). GeneChip analysis revealed that the expression of several genes was altered in the sol2 root tip. Here, we suggest that SOL2, together with CLV2, plays an important role in the regulation of root meristem development through the CLE signaling pathway.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Meristema/crecimiento & desarrollo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Prueba de Complementación Genética , Meristema/genética , Meristema/metabolismo , Mutación , Fenotipo , ARN de Planta/genética , Proteínas Tirosina Quinasas Receptoras/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal
14.
Plant Cell Physiol ; 48(1): 74-83, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17132633

RESUMEN

To understand the regulatory mechanisms of brassinosteroid (BR) biosynthesis in specific plant developmental processes, we first investigated the accumulation profiles of BRs and sterols in xylem differentiation in a Zinnia culture. The amounts of many substances in the late C28 sterol biosynthetic pathway to campesterol (CR), such as episterol and 24-methylenecholesterol, as well as those in the BR-specific biosynthetic pathway from CR to brassinolide (BL), were elevated in close association with tracheary element differentiation. Among them, 6-deoxotyphasterol (6-deoxoTY) accumulated to unusually high levels within cells cultured in tracheary element-inductive medium, while castasterone (CS) was not elevated either within or outside cells. To identify the molecular basis of this co-up-regulation of BRs and C28 sterols, we isolated Zinnia genes for the key enzymes of BR biosynthesis, ZeSTE1, ZeDIM, ZeDWF4, ZeCPD1 and ZeCPD2. RNA gel blot analysis of these genes indicated a coordinated increase in transcripts for ZeSTE1, ZeDIM, ZeDWF4 and ZeCPD1, and a tracheary element differentiation-specific increase in transcripts for ZeDWF4 and ZeCPD1. In situ hybridization experiments of ZeDWF4 and ZeCPD1 mRNAs revealed their preferential accumulation in procambium cells, immature xylem cells and xylem parenchyma cells. These results suggest that BR biosynthesis during tracheary element differentiation may be regulated by the coordinated regulation of broad sterol biosynthesis and specific regulation of BR biosynthesis, which occurs in part by elevated transcript levels of genes encoding BR biosynthetic enzymes, specifically ZeDWF4 and ZeCPD1. These data provide new insights into the regulation of BR biosynthesis and BR signaling during plant development.


Asunto(s)
Aster/fisiología , Colestanoles/metabolismo , Reguladores del Crecimiento de las Plantas/genética , Esteroides Heterocíclicos/metabolismo , Xilema/citología , Secuencia de Aminoácidos , Aster/clasificación , Aster/genética , Brasinoesteroides , Diferenciación Celular , Células Cultivadas , Secuencia Conservada , Regulación de la Expresión Génica de las Plantas , Cinética , Datos de Secuencia Molecular , Filogenia , Fitosteroles/biosíntesis , Alineación de Secuencia , Homología de Secuencia de Aminoácido
15.
Science ; 313(5788): 842-5, 2006 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-16902140

RESUMEN

In plants and animals, small peptide ligands that signal in cell-cell communication have been suggested to be a crucial component of development. A bioassay of single-cell transdifferentation demonstrates that a dodecapeptide with two hydroxyproline residues is the functional product of genes from the CLE family, which includes CLAVATA3 in Arabidopsis. The dodecapeptide suppresses xylem cell development at a concentration of 10(-11) M and promotes cell division. An application, corresponding to all 26 Arabidopsis CLE protein family members, of synthetic dodecapeptides reveals two counteracting signaling pathways involved in stem cell fate.


Asunto(s)
Asteraceae/citología , Diferenciación Celular , Oligopéptidos/metabolismo , Proteínas de Plantas/metabolismo , Estructuras de las Plantas/citología , Transducción de Señal , Células Madre/citología , Secuencia de Aminoácidos , Arabidopsis/citología , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Bioensayo , Comunicación Celular , Células Cultivadas , Ligandos , Meristema/citología , Datos de Secuencia Molecular , Oligopéptidos/química , Oligopéptidos/aislamiento & purificación , Oligopéptidos/farmacología , Proteínas de Plantas/química , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...