Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 2725, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35585055

RESUMEN

While multiplexing samples using DNA barcoding revolutionized the pace of biomedical discovery, multiplexing of live imaging-based applications has been limited by the number of fluorescent proteins that can be deconvoluted using common microscopy equipment. To address this limitation, we develop visual barcodes that discriminate the clonal identity of single cells by different fluorescent proteins that are targeted to specific subcellular locations. We demonstrate that deconvolution of these barcodes is highly accurate and robust to many cellular perturbations. We then use visual barcodes to generate 'Signalome' cell-lines by mixing 12 clones of different live reporters into a single population, allowing simultaneous monitoring of the activity in 12 branches of signaling, at clonal resolution, over time. Using the 'Signalome' we identify two distinct clusters of signaling pathways that balance growth and proliferation, emphasizing the importance of growth homeostasis as a central organizing principle in cancer signaling. The ability to multiplex samples in live imaging applications, both in vitro and in vivo may allow better high-content characterization of complex biological systems.


Asunto(s)
ADN , Microscopía , Células Clonales , Código de Barras del ADN Taxonómico/métodos
2.
Dev Cell ; 56(12): 1756-1769.e7, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34022133

RESUMEN

While molecules that promote the growth of animal cells have been identified, it remains unclear how such signals are orchestrated to determine a characteristic target size for different cell types. It is increasingly clear that cell size is determined by size checkpoints-mechanisms that restrict the cell cycle progression of cells that are smaller than their target size. Previously, we described a p38 MAPK-dependent cell size checkpoint mechanism whereby p38 is selectively activated and prevents cell cycle progression in cells that are smaller than a given target size. In this study, we show that the specific target size required for inactivation of p38 and transition through the cell cycle is determined by CDK4 activity. Our data suggest a model whereby p38 and CDK4 cooperate analogously to the function of a thermostat: while p38 senses irregularities in size, CDK4 corresponds to the thermostat dial that sets the target size.


Asunto(s)
Ciclo Celular/genética , Tamaño de la Célula , Quinasa 4 Dependiente de la Ciclina/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Apoptosis/genética , Puntos de Control del Ciclo Celular/genética , Homeostasis/genética , Humanos , Sistema de Señalización de MAP Quinasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...