Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(12): e2307250121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38483990

RESUMEN

Myelination of neuronal axons is essential for nervous system development. Myelination requires dramatic cytoskeletal dynamics in oligodendrocytes, but how actin is regulated during myelination is poorly understood. We recently identified serum response factor (SRF)-a transcription factor known to regulate expression of actin and actin regulators in other cell types-as a critical driver of myelination in the aged brain. Yet, a major gap remains in understanding the mechanistic role of SRF in oligodendrocyte lineage cells. Here, we show that SRF is required cell autonomously in oligodendrocytes for myelination during development. Combining ChIP-seq with RNA-seq identifies SRF-target genes in oligodendrocyte precursor cells and oligodendrocytes that include actin and other key cytoskeletal genes. Accordingly, SRF knockout oligodendrocytes exhibit dramatically reduced actin filament levels early in differentiation, consistent with its role in actin-dependent myelin sheath initiation. Surprisingly, oligodendrocyte-restricted loss of SRF results in upregulation of gene signatures associated with aging and neurodegenerative diseases. Together, our findings identify SRF as a transcriptional regulator that controls the expression of cytoskeletal genes required in oligodendrocytes for myelination. This study identifies an essential pathway regulating oligodendrocyte biology with high relevance to brain development, aging, and disease.


Asunto(s)
Actinas , Factor de Respuesta Sérica , Actinas/genética , Actinas/metabolismo , Factor de Respuesta Sérica/genética , Factor de Respuesta Sérica/metabolismo , Oligodendroglía/metabolismo , Vaina de Mielina/genética , Vaina de Mielina/metabolismo , Citoesqueleto/genética , Diferenciación Celular/genética
2.
Nat Commun ; 15(1): 265, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177161

RESUMEN

Myelin is essential for rapid nerve signaling and is increasingly found to play important roles in learning and in diverse diseases of the CNS. Morphological parameters of myelin such as sheath length are thought to precisely tune conduction velocity, but the mechanisms controlling sheath morphology are poorly understood. Local calcium signaling has been observed in nascent myelin sheaths and can be modulated by neuronal activity. However, the role of calcium signaling in sheath formation remains incompletely understood. Here, we use genetic tools to attenuate oligodendrocyte calcium signaling during myelination in the developing mouse CNS. Surprisingly, genetic calcium attenuation does not grossly affect the number of myelinated axons or myelin thickness. Instead, calcium attenuation causes myelination defects resulting in shorter, dysmorphic sheaths. Mechanistically, calcium attenuation reduces actin filaments in oligodendrocytes, and an intact actin cytoskeleton is necessary and sufficient to achieve accurate myelin morphology. Together, our work reveals a cellular mechanism required for accurate CNS myelin formation and may provide mechanistic insight into how oligodendrocytes respond to neuronal activity to sculpt and refine myelin sheaths.


Asunto(s)
Actinas , Vaina de Mielina , Animales , Ratones , Vaina de Mielina/metabolismo , Actinas/metabolismo , Calcio/metabolismo , Señalización del Calcio , Oligodendroglía , Axones/fisiología
3.
J Comp Psychol ; 137(4): 265-282, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37561494

RESUMEN

Learned bird songs often have a hierarchical organization. In the case of zebra finches, each bird's song is made up of a string of notes delivered in a stereotyped sequence to form a "motif," and motifs are repeated to form a song bout. During song learning, young males copy "chunks" of two or more consecutive notes from their tutors' songs. These chunks are represented as distinct units within memory (during learning) and within motor systems (during song production). During song performance, motifs may deviate from the learned sequence by stopping short, starting late, or by skipping, inserting, or repeating notes. We measured acoustic and temporal variables related to the respiratory and vocal physiology of song production and asked how they related to deviations from each bird's "canonical" sequence. The best predictor of deviations from that sequence was the duration of the silent interval between notes, when inspiration normally occurs. Deviations from the canonical motif occurred less often after higher-pitched notes, perhaps because a high-low sequence forms a prosodic unit. Premature stops often followed louder and longer notes, suggesting that respiratory and muscular physiology influence the location of such stops. Boundaries between the learned chunks of a male's motif predicted where and how often noncanonical starts occurred. Physiological and cognitive elements also interacted to define the segmentation of zebra finch song sequences. Long silent intervals between notes were associated both with physiology (inspirations) and with the cognitive boundaries of learned chunks-and hence with deviations from the canonical motif. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Asunto(s)
Pinzones , Vocalización Animal , Animales , Masculino , Vocalización Animal/fisiología , Aprendizaje/fisiología , Memoria , Pinzones/fisiología , Cognición
4.
bioRxiv ; 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37090556

RESUMEN

Myelin is essential for rapid nerve signaling and is increasingly found to play important roles in learning and in diverse diseases of the CNS. Morphological parameters of myelin such as sheath length and thickness are regulated by neuronal activity and can precisely tune conduction velocity, but the mechanisms controlling sheath morphology are poorly understood. Local calcium signaling has been observed in nascent myelin sheaths and can be modulated by neuronal activity. However, the role of calcium signaling in sheath formation and remodeling is unknown. Here, we used genetic tools to attenuate oligodendrocyte calcium signaling during active myelination in the developing mouse CNS. Surprisingly, we found that genetic calcium attenuation did not grossly affect the number of myelinated axons or myelin thickness. Instead, calcium attenuation caused striking myelination defects resulting in shorter, dysmorphic sheaths. Mechanistically, calcium attenuation reduced actin filaments in oligodendrocytes, and an intact actin cytoskeleton was necessary and sufficient to achieve accurate myelin morphology. Together, our work reveals a novel cellular mechanism required for accurate CNS myelin formation and provides mechanistic insight into how oligodendrocytes may respond to neuronal activity to sculpt myelin sheaths throughout the nervous system.

6.
Nat Chem Biol ; 19(2): 187-197, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36266352

RESUMEN

Lipids contribute to the structure, development, and function of healthy brains. Dysregulated lipid metabolism is linked to aging and diseased brains. However, our understanding of lipid metabolism in aging brains remains limited. Here we examined the brain lipidome of mice across their lifespan using untargeted lipidomics. Co-expression network analysis highlighted a progressive decrease in 3-sulfogalactosyl diacylglycerols (SGDGs) and SGDG pathway members, including the potential degradation products lyso-SGDGs. SGDGs show an age-related decline specifically in the central nervous system and are associated with myelination. We also found that an SGDG dramatically suppresses LPS-induced gene expression and release of pro-inflammatory cytokines from macrophages and microglia by acting on the NF-κB pathway. The detection of SGDGs in human and macaque brains establishes their evolutionary conservation. This work enhances interest in SGDGs regarding their roles in aging and inflammatory diseases and highlights the complexity of the brain lipidome and potential biological functions in aging.


Asunto(s)
Envejecimiento , Lípidos , Animales , Humanos , Ratones , Envejecimiento/genética , Antiinflamatorios , Encéfalo/metabolismo , Microglía/metabolismo , FN-kappa B/metabolismo
7.
Nat Commun ; 13(1): 5583, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36151203

RESUMEN

Myelin is required for rapid nerve signaling and is emerging as a key driver of CNS plasticity and disease. How myelin is built and remodeled remains a fundamental question of neurobiology. Central to myelination is the ability of oligodendrocytes to add vast amounts of new cell membrane, expanding their surface areas by many thousand-fold. However, how oligodendrocytes add new membrane to build or remodel myelin is not fully understood. Here, we show that CNS myelin membrane addition requires exocytosis mediated by the vesicular SNARE proteins VAMP2/3. Genetic inactivation of VAMP2/3 in myelinating oligodendrocytes caused severe hypomyelination and premature death without overt loss of oligodendrocytes. Through live imaging, we discovered that VAMP2/3-mediated exocytosis drives membrane expansion within myelin sheaths to initiate wrapping and power sheath elongation. In conjunction with membrane expansion, mass spectrometry of oligodendrocyte surface proteins revealed that VAMP2/3 incorporates axon-myelin adhesion proteins that are collectively required to form nodes of Ranvier. Together, our results demonstrate that VAMP2/3-mediated membrane expansion in oligodendrocytes is indispensable for myelin formation, uncovering a cellular pathway that could sculpt myelination patterns in response to activity-dependent signals or be therapeutically targeted to promote regeneration in disease.


Asunto(s)
Oligodendroglía , Proteína 2 de Membrana Asociada a Vesículas , Axones/fisiología , Proteínas de la Mielina/metabolismo , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/genética , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
8.
Nature ; 605(7910): 509-515, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35545674

RESUMEN

Recent understanding of how the systemic environment shapes the brain throughout life has led to numerous intervention strategies to slow brain ageing1-3. Cerebrospinal fluid (CSF) makes up the immediate environment of brain cells, providing them with nourishing compounds4,5. We discovered that infusing young CSF directly into aged brains improves memory function. Unbiased transcriptome analysis of the hippocampus identified oligodendrocytes to be most responsive to this rejuvenated CSF environment. We further showed that young CSF boosts oligodendrocyte progenitor cell (OPC) proliferation and differentiation in the aged hippocampus and in primary OPC cultures. Using SLAMseq to metabolically label nascent mRNA, we identified serum response factor (SRF), a transcription factor that drives actin cytoskeleton rearrangement, as a mediator of OPC proliferation following exposure to young CSF. With age, SRF expression decreases in hippocampal OPCs, and the pathway is induced by acute injection with young CSF. We screened for potential SRF activators in CSF and found that fibroblast growth factor 17 (Fgf17) infusion is sufficient to induce OPC proliferation and long-term memory consolidation in aged mice while Fgf17 blockade impairs cognition in young mice. These findings demonstrate the rejuvenating power of young CSF and identify Fgf17 as a key target to restore oligodendrocyte function in the ageing brain.


Asunto(s)
Envejecimiento , Encéfalo , Líquido Cefalorraquídeo , Células Precursoras de Oligodendrocitos , Oligodendroglía , Animales , Diferenciación Celular/genética , Líquido Cefalorraquídeo/fisiología , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación de la Expresión Génica , Ratones , Células Precursoras de Oligodendrocitos/metabolismo , Oligodendroglía/metabolismo
9.
Nature ; 603(7900): 321-327, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35073561

RESUMEN

Multiple sclerosis (MS) is a heterogenous autoimmune disease in which autoreactive lymphocytes attack the myelin sheath of the central nervous system. B lymphocytes in the cerebrospinal fluid (CSF) of patients with MS contribute to inflammation and secrete oligoclonal immunoglobulins1,2. Epstein-Barr virus (EBV) infection has been epidemiologically linked to MS, but its pathological role remains unclear3. Here we demonstrate high-affinity molecular mimicry between the EBV transcription factor EBV nuclear antigen 1 (EBNA1) and the central nervous system protein glial cell adhesion molecule (GlialCAM) and provide structural and in vivo functional evidence for its relevance. A cross-reactive CSF-derived antibody was initially identified by single-cell sequencing of the paired-chain B cell repertoire of MS blood and CSF, followed by protein microarray-based testing of recombinantly expressed CSF-derived antibodies against MS-associated viruses. Sequence analysis, affinity measurements and the crystal structure of the EBNA1-peptide epitope in complex with the autoreactive Fab fragment enabled tracking of the development of the naive EBNA1-restricted antibody to a mature EBNA1-GlialCAM cross-reactive antibody. Molecular mimicry is facilitated by a post-translational modification of GlialCAM. EBNA1 immunization exacerbates disease in a mouse model of MS, and anti-EBNA1 and anti-GlialCAM antibodies are prevalent in patients with MS. Our results provide a mechanistic link for the association between MS and EBV and could guide the development of new MS therapies.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Esclerosis Múltiple , Animales , Linfocitos B , Moléculas de Adhesión Celular Neurona-Glia , Antígenos Nucleares del Virus de Epstein-Barr , Herpesvirus Humano 4 , Humanos , Ratones , Proteínas del Tejido Nervioso
10.
J Comp Neurol ; 526(18): 2937-2954, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30019757

RESUMEN

Neurons in the lateral hypothalamic area that express hypocretin (Hcrt) neuropeptides help regulate many behaviors including wakefulness and reward seeking. These neurons project throughout the brain, including to neural populations that regulate wakefulness, such as the locus coeruleus (LC) and tuberomammilary nucleus (TMN), as well as to populations that regulate reward, such as the nucleus accumbens (NAc) and ventral tegmental area (VTA). To address the roles of Hcrt neurons in seemingly disparate behaviors, it has been proposed that Hcrt neurons can be anatomically subdivided into at least two distinct subpopulations: a "medial group" that projects to the LC and TMN, and a "lateral group" that projects to the NAc and VTA. Here, we use a dual retrograde tracer strategy to test the hypotheses that Hcrt neurons can be classified based on their downstream projections and medial/lateral location within the hypothalamus. We found that individual Hcrt neurons were significantly more likely to project to both the LC and TMN or to both the VTA and NAc than would be predicted by chance. In contrast, we found that Hcrt neurons that projected to the LC or TMN were mostly distinct from Hcrt neurons that projected to the VTA or NAc. Interestingly, these two populations of Hcrt neurons are intermingled within the hypothalamus and cannot be classified into medial or lateral groups. These results suggest that Hcrt neurons can be distinguished based on their downstream projections but are intermingled within the hypothalamus.


Asunto(s)
Hipotálamo/citología , Vías Nerviosas/citología , Neuronas/citología , Animales , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/metabolismo , Neuronas/metabolismo , Orexinas/análisis , Orexinas/biosíntesis
11.
Cell Rep ; 22(8): 1974-1981, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29466726

RESUMEN

Restoring adult stem cell function provides an exciting approach for rejuvenating the aging brain. However, molecular mechanisms mediating neurogenic rejuvenation remain elusive. Here we report that the enzyme ten eleven translocation methylcytosine dioxygenase 2 (Tet2), which catalyzes the production of 5-hydroxymethylcytosine (5hmC), rescues age-related decline in adult neurogenesis and enhances cognition in mice. We detected a decrease in Tet2 expression and 5hmC levels in the aged hippocampus associated with adult neurogenesis. Mimicking an aged condition in young adults by abrogating Tet2 expression within the hippocampal neurogenic niche, or adult neural stem cells, decreased neurogenesis and impaired learning and memory. In a heterochronic parabiosis rejuvenation model, hippocampal Tet2 expression was restored. Overexpressing Tet2 in the hippocampal neurogenic niche of mature adults increased 5hmC associated with neurogenic processes, offset the precipitous age-related decline in neurogenesis, and enhanced learning and memory. Our data identify Tet2 as a key molecular mediator of neurogenic rejuvenation.


Asunto(s)
Envejecimiento/patología , Encéfalo/fisiopatología , Cognición , Proteínas de Unión al ADN/metabolismo , Regeneración Nerviosa , Proteínas Proto-Oncogénicas/metabolismo , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animales , Giro Dentado/metabolismo , Giro Dentado/patología , Giro Dentado/fisiopatología , Dioxigenasas , Masculino , Ratones Endogámicos C57BL , Modelos Animales , Células-Madre Neurales/metabolismo , Neurogénesis , Parabiosis
13.
Front Syst Neurosci ; 9: 111, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26300745

RESUMEN

A major question in systems neuroscience is how a single population of neurons can interact with the rest of the brain to orchestrate complex behavioral states. The hypothalamus contains many such discrete neuronal populations that individually regulate arousal, feeding, and drinking. For example, hypothalamic neurons that express hypocretin (Hcrt) neuropeptides can sense homeostatic and metabolic factors affecting wakefulness and orchestrate organismal arousal. Neurons that express agouti-related protein (AgRP) can sense the metabolic needs of the body and orchestrate a state of hunger. The organum vasculosum of the lamina terminalis (OVLT) can detect the hypertonicity of blood and orchestrate a state of thirst. Each hypothalamic population is sufficient to generate complicated behavioral states through the combined efforts of distinct efferent projections. The principal challenge to understanding these brain systems is therefore to determine the individual roles of each downstream projection for each behavioral state. In recent years, the development and application of temporally precise, genetically encoded tools has greatly improved our understanding of the structure and function of these neural systems. This review will survey recent advances in our understanding of how these individual hypothalamic populations can orchestrate complicated behavioral states due to the combined efforts of individual downstream projections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...