Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 133(3)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36454631

RESUMEN

BACKGROUNDThe presence and reactivation of chronic viral infections, such as EBV, CMV, and HIV, have been proposed as potential contributors to long COVID (LC), but studies in well-characterized postacute cohorts of individuals with COVID-19 over a longer time course consistent with current case definitions of LC are limited.METHODSIn a cohort of 280 adults with prior SARS-CoV-2 infection, we assessed the presence and types of LC symptoms and prior medical history (including COVID-19 history and HIV status) and performed serological testing for EBV and CMV using a commercial laboratory. We used covariate-adjusted binary logistic regression models to identify independent associations between variables and LC symptoms.RESULTSWe observed that LC symptoms, such as fatigue and neurocognitive dysfunction, at a median of 4 months following initial diagnosis were independently associated with serological evidence suggesting recent EBV reactivation (early antigen-diffuse IgG positivity) or high nuclear antigen (EBNA) IgG levels but not with ongoing EBV viremia. Serological evidence suggesting recent EBV reactivation (early antigen-diffuse IgG positivity) was most strongly associated with fatigue (OR = 2.12). Underlying HIV infection was also independently associated with neurocognitive LC (OR = 2.5). Interestingly, participants who had serologic evidence of prior CMV infection were less likely to develop neurocognitive LC (OR = 0.52).CONCLUSIONOverall, these findings suggest differential effects of chronic viral coinfections on the likelihood of developing LC and association with distinct syndromic patterns. Further assessment during the acute phase of COVID-19 is warranted.TRIAL REGISTRATIONLong-term Impact of Infection with Novel Coronavirus; ClinicalTrials.gov NCT04362150.FUNDINGThis work was supported by NIH/National Institute of Allergy and Infectious Diseases grants (3R01AI141003-03S1, R01AI158013, and K24AI145806); the Zuckerberg San Francisco General Hospital Department of Medicine and Division of HIV, Infectious Diseases, and Global Medicine; and the UCSF-Bay Area Center for AIDS Research (P30-AI027763).


Asunto(s)
COVID-19 , Coinfección , Infecciones por Citomegalovirus , Infecciones por VIH , Adulto , Humanos , COVID-19/epidemiología , SARS-CoV-2 , Síndrome Post Agudo de COVID-19 , Infecciones por VIH/complicaciones , Infecciones por VIH/epidemiología , Coinfección/epidemiología , Fatiga/epidemiología , Fatiga/etiología , Inmunoglobulina G , Anticuerpos Antivirales
2.
medRxiv ; 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35898346

RESUMEN

The presence and reactivation of chronic viral infections such as Epstein-Barr virus (EBV), cytomegalovirus (CMV) and human immunodeficiency virus (HIV) have been proposed as potential contributors to Long COVID (LC), but studies in well-characterized post-acute cohorts of individuals with COVID-19 over a longer time course consistent with current case definitions of LC are limited. In a cohort of 280 adults with prior SARS-CoV-2 infection, we observed that LC symptoms such as fatigue and neurocognitive dysfunction at a median of 4 months following initial diagnosis were independently associated with serological evidence of recent EBV reactivation (early antigen-D [EA-D] IgG positivity) or high nuclear antigen IgG levels, but not with ongoing EBV viremia. Evidence of EBV reactivation (EA-D IgG) was most strongly associated with fatigue (OR 2.12). Underlying HIV infection was also independently associated with neurocognitive LC (OR 2.5). Interestingly, participants who had serologic evidence of prior CMV infection were less likely to develop neurocognitive LC (OR 0.52) and tended to have less severe (>5 symptoms reported) LC (OR 0.44). Overall, these findings suggest differential effects of chronic viral co-infections on the likelihood of developing LC and predicted distinct syndromic patterns. Further assessment during the acute phase of COVID-19 is warranted. SUMMARY: The authors found that Long COVID symptoms in a post-acute cohort were associated with serological evidence of recent EBV reactivation and pre-existing HIV infection when adjusted for participant factors, sample timing, comorbid conditions and prior hospitalization, whereas underlying CMV infection was associated with a decreased risk of Long COVID.

3.
Nat Commun ; 13(1): 1219, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35264559

RESUMEN

A major obstacle to achieving long-term antiretroviral (ART) free remission or functional cure of HIV infection is the presence of persistently infected cells that establish a long-lived viral reservoir. HIV largely resides in anatomical regions that are inaccessible to routine sampling, however, and non-invasive methods to understand the longitudinal tissue-wide burden of HIV persistence are urgently needed. Positron emission tomography (PET) imaging is a promising strategy to identify and characterize the tissue-wide burden of HIV. Here, we assess the efficacy of using immunoPET imaging to characterize HIV reservoirs and identify anatomical foci of persistent viral transcriptional activity using a radiolabeled HIV Env-specific broadly neutralizing antibody, 89Zr-VRC01, in HIV-infected individuals with detectable viremia and on suppressive ART compared to uninfected controls (NCT03729752). We also assess the relationship between PET tracer uptake in tissues and timing of ART initiation and direct HIV protein expression in CD4 T cells obtained from lymph node biopsies. We observe significant increases in 89Zr-VRC01 uptake in various tissues (including lymph nodes and gut) in HIV-infected individuals with detectable viremia (N = 5) and on suppressive ART (N = 5) compared to uninfected controls (N = 5). Importantly, PET tracer uptake in inguinal lymph nodes in viremic and ART-suppressed participants significantly and positively correlates with HIV protein expression measured directly in tissue. Our strategy may allow non-invasive longitudinal characterization of residual HIV infection and lays the framework for the development of immunoPET imaging in a variety of other infectious diseases.


Asunto(s)
Infecciones por VIH , VIH-1 , Anticuerpos Neutralizantes , Anticuerpos ampliamente neutralizantes , Linfocitos T CD4-Positivos , Infecciones por VIH/diagnóstico por imagen , Humanos , Tomografía de Emisión de Positrones , Carga Viral , Viremia/diagnóstico por imagen
4.
Open Forum Infect Dis ; 8(8): ofab393, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34395717

RESUMEN

We report a patient with connective tissue disease who developed modest severe acute respiratory syndrome coronavirus 2 receptor binding domain-specific antibody levels and a lack of neutralization capacity, despite having received 3 mRNA coronavirus disease 2019 vaccines and holding anti-B-cell therapy for >7 months before vaccination. The patient developed virus-specific T-cell responses.

5.
Cell Rep ; 36(6): 109518, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34358460

RESUMEN

We describe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cell responses, soluble markers of inflammation, and antibody levels and neutralization capacity longitudinally in 70 individuals with PCR-confirmed SARS-CoV-2 infection. Participants represent a spectrum of illness and recovery, including some with persistent viral shedding in saliva and many experiencing post-acute sequelae of SARS-CoV-2 infection (PASC). T cell responses remain stable for up to 9 months. Whereas the magnitude of early CD4+ T cell immune responses correlates with severity of initial infection, pre-existing lung disease is independently associated with higher long-term SARS-CoV-2-specific CD8+ T cell responses. Among participants with PASC 4 months following coronavirus disease 2019 (COVID-19) symptom onset, we observe a lower frequency of CD8+ T cells expressing CD107a, a marker of degranulation, in response to Nucleocapsid (N) peptide pool stimulation, and a more rapid decline in the frequency of N-specific interferon-γ-producing CD8+ T cells. Neutralizing antibody levels strongly correlate with SARS-CoV-2-specific CD4+ T cell responses.


Asunto(s)
COVID-19/complicaciones , COVID-19/inmunología , SARS-CoV-2/inmunología , Adulto , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Linfocitos T CD8-positivos/inmunología , COVID-19/patología , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Índice de Severidad de la Enfermedad , Esparcimiento de Virus/inmunología , Síndrome Post Agudo de COVID-19
6.
Sci Adv ; 7(31)2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34330709

RESUMEN

Interpretation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serosurveillance studies is limited by poorly defined performance of antibody assays over time in individuals with different clinical presentations. We measured antibody responses in plasma samples from 128 individuals over 160 days using 14 assays. We found a consistent and strong effect of disease severity on antibody magnitude, driven by fever, cough, hospitalization, and oxygen requirement. Responses to spike protein versus nucleocapsid had consistently higher correlation with neutralization. Assays varied substantially in sensitivity during early convalescence and time to seroreversion. Variability was dramatic for individuals with mild infection, who had consistently lower antibody titers, with sensitivities at 6 months ranging from 33 to 98% for commercial assays. Thus, the ability to detect previous infection by SARS-CoV-2 is highly dependent on infection severity, timing, and the assay used. These findings have important implications for the design and interpretation of SARS-CoV-2 serosurveillance studies.

7.
Nat Biotechnol ; 39(8): 928-935, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33767397

RESUMEN

Current serology tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies mainly take the form of enzyme-linked immunosorbent assays, chemiluminescent microparticle immunoassays or lateral flow assays, which are either laborious, expensive or lacking sufficient sensitivity and scalability. Here we present the development and validation of a rapid, low-cost, solution-based assay to detect antibodies in serum, plasma, whole blood and to a lesser extent saliva, using rationally designed split luciferase antibody biosensors. This new assay, which generates quantitative results in 30 min, substantially reduces the complexity and improves the scalability of coronavirus disease 2019 (COVID-19) antibody tests. This assay is well-suited for point-of-care, broad population testing, and applications in low-resource settings, for monitoring host humoral responses to vaccination or viral infection.


Asunto(s)
Anticuerpos Antivirales/sangre , Técnicas Biosensibles/métodos , Prueba Serológica para COVID-19/métodos , COVID-19/diagnóstico , Sistemas de Atención de Punto , SARS-CoV-2/inmunología , COVID-19/virología , Humanos , Luminiscencia
8.
Cells ; 10(2)2021 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-33668514

RESUMEN

As the SARS-CoV-2 pandemic continues, reports have demonstrated neurologic sequelae following COVID-19 recovery. Mechanisms to explain long-term neurological sequelae are unknown and need to be identified. Plasma from 24 individuals recovering from COVID-19 at 1 to 3 months after initial infection were collected for cytokine and antibody levels and neuronal-enriched extracellular vesicle (nEV) protein cargo analyses. Plasma cytokine IL-4 was increased in all COVID-19 participants. Volunteers with self-reported neurological problems (nCoV, n = 8) had a positive correlation of IL6 with age or severity of the sequalae, at least one co-morbidity and increased SARS-CoV-2 antibody compared to those COVID-19 individuals without neurological issues (CoV, n = 16). Protein markers of neuronal dysfunction including amyloid beta, neurofilament light, neurogranin, total tau, and p-T181-tau were all significantly increased in the nEVs of all participants recovering from COVID-19 compared to historic controls. This study suggests ongoing peripheral and neuroinflammation after COVID-19 infection that may influence neurological sequelae by altering nEV proteins. Individuals recovering from COVID-19 may have occult neural damage while those with demonstrative neurological symptoms additionally had more severe infection. Longitudinal studies to monitor plasma biomarkers and nEV cargo are warranted to assess persistent neurodegeneration and systemic effects.


Asunto(s)
COVID-19/complicaciones , Vesículas Extracelulares/patología , Enfermedades del Sistema Nervioso/etiología , Adulto , Anciano , Péptidos beta-Amiloides/análisis , Biomarcadores/análisis , Biomarcadores/sangre , COVID-19/sangre , COVID-19/patología , Femenino , Humanos , Inmunoglobulina G/sangre , Interleucina-4/sangre , Interleucina-6/sangre , Masculino , Persona de Mediana Edad , Enfermedades del Sistema Nervioso/sangre , Enfermedades del Sistema Nervioso/patología , Proteínas de Neurofilamentos/análisis , Neurogranina/análisis , Neuronas/patología , Proteínas tau/análisis
9.
medRxiv ; 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33688675

RESUMEN

Serosurveillance studies are critical for estimating SARS-CoV-2 transmission and immunity, but interpretation of results is currently limited by poorly defined variability in the performance of antibody assays to detect seroreactivity over time in individuals with different clinical presentations. We measured longitudinal antibody responses to SARS-CoV-2 in plasma samples from a diverse cohort of 128 individuals over 160 days using 14 binding and neutralization assays. For all assays, we found a consistent and strong effect of disease severity on antibody magnitude, with fever, cough, hospitalization, and oxygen requirement explaining much of this variation. We found that binding assays measuring responses to spike protein had consistently higher correlation with neutralization than those measuring responses to nucleocapsid, regardless of assay format and sample timing. However, assays varied substantially with respect to sensitivity during early convalescence and in time to seroreversion. Variations in sensitivity and durability were particularly dramatic for individuals with mild infection, who had consistently lower antibody titers and represent the majority of the infected population, with sensitivities often differing substantially from reported test characteristics (e.g., amongst commercial assays, sensitivity at 6 months ranged from 33% for ARCHITECT IgG to 98% for VITROS Total Ig). Thus, the ability to detect previous infection by SARS-CoV-2 is highly dependent on the severity of the initial infection, timing relative to infection, and the assay used. These findings have important implications for the design and interpretation of SARS-CoV-2 serosurveillance studies.

10.
medRxiv ; 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33688685

RESUMEN

A detailed understanding of long-term SARS-CoV-2-specific T cell responses and their relationship to humoral immunity and markers of inflammation in diverse groups of individuals representing the spectrum of COVID-19 illness and recovery is urgently needed. Data are also lacking as to whether and how adaptive immune and inflammatory responses differ in individuals that experience persistent symptomatic sequelae months following acute infection compared to those with complete, rapid recovery. We measured SARS-CoV-2-specific T cell responses, soluble markers of inflammation, and antibody levels and neutralization capacity longitudinally up to 9 months following infection in a diverse group of 70 individuals with PCR-confirmed SARS-CoV-2 infection. The participants had varying degrees of initial disease severity and were enrolled in the northern California Long-term Impact of Infection with Novel Coronavirus (LIINC) cohort. Adaptive T cell responses remained remarkably stable in all participants across disease severity during the entire study interval. Whereas the magnitude of the early CD4+ T cell immune response is determined by the severity of initial infection (participants requiring hospitalization or intensive care), pre-existing lung disease was significantly associated with higher long-term SARS-CoV2-specific CD8+ T cell responses, independent of initial disease severity or age. Neutralizing antibody levels were strongly correlated with SARS-CoV-2-specific CD4+ T but not CD8+ T cell responses. Importantly, we did not identify substantial differences in long-term virus-specific T cell or antibody responses between participants with and without COVID-19-related symptoms that persist months after initial infection.

11.
J Leukoc Biol ; 110(1): 21-26, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33464637

RESUMEN

The global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly pathogenic RNA virus causing coronavirus disease 2019 (COVID-19) in humans. Although most patients with COVID-19 have mild illness and may be asymptomatic, some will develop severe pneumonia, acute respiratory distress syndrome, multi-organ failure, and death. RNA viruses such as SARS-CoV-2 are capable of hijacking the epigenetic landscape of host immune cells to evade antiviral defense. Yet, there remain considerable gaps in our understanding of immune cell epigenetic changes associated with severe SARS-CoV-2 infection pathology. Here, we examined genome-wide DNA methylation (DNAm) profiles of peripheral blood mononuclear cells from 9 terminally-ill, critical COVID-19 patients with confirmed SARS-CoV-2 plasma viremia compared with uninfected, hospitalized influenza, untreated primary HIV infection, and mild/moderate COVID-19 HIV coinfected individuals. Cell-type deconvolution analyses confirmed lymphopenia in severe COVID-19 and revealed a high percentage of estimated neutrophils suggesting perturbations to DNAm associated with granulopoiesis. We observed a distinct DNAm signature of severe COVID-19 characterized by hypermethylation of IFN-related genes and hypomethylation of inflammatory genes, reinforcing observations in infection models and single-cell transcriptional studies of severe COVID-19. Epigenetic clock analyses revealed severe COVID-19 was associated with an increased DNAm age and elevated mortality risk according to GrimAge, further validating the epigenetic clock as a predictor of disease and mortality risk. Our epigenetic results reveal a discovery DNAm signature of severe COVID-19 in blood potentially useful for corroborating clinical assessments, informing pathogenic mechanisms, and revealing new therapeutic targets against SARS-CoV-2.


Asunto(s)
COVID-19/genética , Metilación de ADN/genética , Epigénesis Genética , Genoma Humano , COVID-19/virología , Infecciones por VIH/genética , Humanos , Gripe Humana/genética , SARS-CoV-2/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...