Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38260598

RESUMEN

The direct blockade of CB 1 cannabinoid receptors produces therapeutic effects as well as adverse side-effects that limit their clinical potential. CB 1 negative allosteric modulators (NAMs) represent an indirect approach to decrease the affinity and/or efficacy of orthosteric cannabinoid ligands or endocannabinoids at CB 1 . We recently reported that GAT358, a CB 1 -NAM, blocked opioid-induced mesocorticolimbic dopamine release and reward via a CB 1 -allosteric mechanism of action. Whether a CB 1 -NAM dampens opioid-mediated therapeutic effects such as analgesia or alters other unwanted side-effects of opioids remain unknown. Here, we characterized the effects of GAT358 on nociceptive behaviors in the presence and absence of morphine. We examined the impact of GAT358 on formalin-evoked pain behavior and Fos protein expression, a marker of neuronal activation, in the lumbar dorsal horn. We also assessed the impact of GAT358 on morphine-induced slowing of colonic transit, tolerance, and withdrawal behaviors. GAT358 attenuated morphine antinociceptive tolerance without blocking acute antinociception. GAT358 also reduced morphine-induced slowing of colonic motility without impacting fecal boli production. GAT358 produced antinociception in the presence and absence of morphine in the formalin model of inflammatory nociception and reduced the number of formalin-evoked Fos protein-like immunoreactive cells in the lumbar spinal dorsal horn. Finally, GAT358 mitigated the somatic signs of naloxone-precipitated, but not spontaneous, opioid withdrawal following chronic morphine dosing in mice. Our results support the therapeutic potential of CB 1 -NAMs as novel drug candidates aimed at preserving opioid-mediated analgesia while preventing their unwanted side-effects. Our studies also uncover previously unrecognized antinociceptive properties associated with an arrestin-biased CB 1 -NAMs. Highlights: CB 1 negative allosteric modulator (NAM) GAT358 attenuated morphine tolerance GAT358 reduced morphine-induced slowing of colonic motility but not fecal productionGAT358 was antinociceptive for formalin pain alone and when combined with morphineGAT358 reduced formalin-evoked Fos protein expression in the lumbar spinal cordGAT358 mitigated naloxone precipitated withdrawal after chronic morphine dosing.

2.
Pharmacol Res ; 185: 106474, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36179954

RESUMEN

Blockade of cannabinoid type 1 (CB1)-receptor signaling decreases the rewarding properties of many drugs of abuse and has been proposed as an anti-addiction strategy. However, psychiatric side-effects limit the clinical potential of orthosteric CB1 antagonists. Negative allosteric modulators (NAMs) represent a novel and indirect approach to attenuate CB1 signaling by decreasing affinity and/or efficacy of CB1 ligands. We hypothesized that a CB1-NAM would block opioid reward while avoiding the unwanted effects of orthosteric CB1 antagonists. GAT358, a CB1-NAM, failed to elicit cardinal signs of direct CB1 activation or inactivation when administered by itself. GAT358 decreased catalepsy and hypothermia but not antinociception produced by the orthosteric CB1 agonist CP55,940, suggesting that a CB1-NAM blocked cardinal signs of CB1 activation. Next, GAT358 was evaluated using in vivo assays of opioid-induced dopamine release and reward in male rodents. In the nucleus accumbens shell, a key component of the mesocorticolimbic reward pathway, morphine increased electrically-evoked dopamine efflux and this effect was blocked by a dose of GAT358 that lacked intrinsic effects on evoked dopamine efflux. Moreover, GAT358 blocked morphine-induced reward in a conditioned place preference (CPP) assay without producing reward or aversion alone. GAT358-induced blockade of morphine CPP was also occluded by GAT229, a CB1 positive allosteric modulator (CB1-PAM), and absent in CB1-knockout mice. Finally, GAT358 also reduced oral oxycodone (but not water) consumption in a two-bottle choice paradigm. Our results support the therapeutic potential of CB1-NAMs as novel drug candidates aimed at preventing opioid reward and treating opioid abuse while avoiding unwanted side-effects.


Asunto(s)
Analgésicos Opioides , Dopamina , Ratones , Animales , Masculino , Analgésicos Opioides/farmacología , Recompensa , Morfina/farmacología , Ratones Noqueados , Receptores de Cannabinoides , Receptor Cannabinoide CB1
3.
Addict Biol ; 27(5): e13220, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36001441

RESUMEN

Glutamate signalling through the N-methyl-d-aspartate receptor (NMDAR) activates the enzyme neuronal nitric oxide synthase (nNOS) to produce the signalling molecule nitric oxide (NO). We hypothesized that disruption of the protein-protein interaction between nNOS and the scaffolding protein postsynaptic density 95 kDa (PSD95) would block NMDAR-dependent NO signalling and represent a viable therapeutic route to decrease opioid reward and relapse-like behaviour without the unwanted side effects of NMDAR antagonists. We used a conditioned place preference (CPP) paradigm to evaluate the impact of two small-molecule PSD95-nNOS inhibitors, IC87201 and ZL006, on the rewarding effects of morphine. Both IC87201 and ZL006 blocked morphine-induced CPP at doses that lacked intrinsic rewarding or aversive properties. Furthermore, in vivo fast-scan cyclic voltammetry (FSCV) was used to ascertain the impact of ZL006 on morphine-induced increases in dopamine (DA) efflux in the nucleus accumbens shell (NAc shell) evoked by electrical stimulation of the medial forebrain bundle (MFB). ZL006 attenuated morphine-induced increases in DA efflux at a dose that did not have intrinsic effects on DA transmission. We also employed multiple intravenous drug self-administration approaches to examine the impact of ZL006 on the reinforcing effects of morphine. Interestingly, ZL006 did not alter acquisition or maintenance of morphine self-administration, but reduced lever pressing in a morphine relapse test after forced abstinence. Our results provide behavioural and neurochemical support for the hypothesis that inhibition of PSD95-nNOS protein-protein interactions decreases morphine reward and relapse-like behaviour, highlighting a previously unreported application for these novel therapeutics in the treatment of opioid addiction.


Asunto(s)
Morfina , Recompensa , Animales , Homólogo 4 de la Proteína Discs Large , Morfina/farmacología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Núcleo Accumbens/metabolismo , Ratas , Receptores de N-Metil-D-Aspartato/metabolismo , Recurrencia
4.
Neuropharmacology ; 205: 108925, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34921830

RESUMEN

The abuse of oral formulations of prescription opioids has precipitated the current opioid epidemic. We developed an oral oxycodone consumption model consisting of a limited access (4 h) two-bottle choice drinking in the dark (TBC-DID) paradigm and quantified dependence with naloxone challenge using mice of both sexes. We also assessed neurobiological correlates of withdrawal and dependence elicited via oral oxycodone consumption using immunohistochemistry for DeltaFosB (ΔFosB), a transcription factor described as a molecular marker for drug addiction. Neither sex developed a preference for the oxycodone bottle, irrespective of oxycodone concentration, bottle position or prior water restriction. Mice that volitionally consumed oxycodone exhibited hyperlocomotion in an open field test and supraspinal but not spinally-mediated antinociception. Both sexes also developed robust, dose-dependent levels of opioid withdrawal that was precipitated by the opioid antagonist naloxone. Oral oxycodone consumption followed by naloxone challenge led to mesocorticolimbic region-dependent increases in the number of ΔFosB expressing cells. Naloxone-precipitated withdrawal jumps, but not the oxycodone bottle % preference, was positively correlated with the number of ΔFosB expressing cells specifically in the nucleus accumbens shell. Thus, limited access oral consumption of oxycodone produced physical dependence and increased ΔFosB expression despite the absence of opioid preference. Our TBC-DID paradigm allows for the study of oral opioid consumption in a simple, high-throughput manner and elucidates the underlying neurobiological substrates that accompany opioid-induced physical dependence.


Asunto(s)
Analgésicos Opioides/farmacología , Núcleo Accumbens/efectos de los fármacos , Trastornos Relacionados con Opioides , Oxicodona/farmacología , Proteínas Proto-Oncogénicas c-fos/efectos de los fármacos , Síndrome de Abstinencia a Sustancias , Analgésicos Opioides/administración & dosificación , Animales , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Locomoción/efectos de los fármacos , Ratones , Naloxona/farmacología , Antagonistas de Narcóticos/farmacología , Nocicepción/efectos de los fármacos , Núcleo Accumbens/metabolismo , Trastornos Relacionados con Opioides/metabolismo , Trastornos Relacionados con Opioides/fisiopatología , Oxicodona/administración & dosificación , Proteínas Proto-Oncogénicas c-fos/metabolismo , Síndrome de Abstinencia a Sustancias/metabolismo , Síndrome de Abstinencia a Sustancias/fisiopatología
5.
Neurobiol Dis ; 159: 105491, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34461264

RESUMEN

Parkinson's disease (PD) is a neurodegenerative movement disorder that is routinely treated with levodopa. Unfortunately, long-term dopamine replacement therapy using levodopa leads to levodopa-induced dyskinesias (LID), a significant and disabling side-effect. Clinical findings indicate that LID typically only occurs following the progression of PD motor symptoms from the unilateral (Hoehn and Yahr (HY) Stage I) to the bilateral stage (HY Stage II). This suggests the presence of some compensatory interhemispheric mechanisms that delay the occurrence of LID. We therefore investigated the role of interhemispheric connections of the nigrostriatal pathway on LID expression in a rat model of PD. The striatum of one hemisphere of rats was first injected with a retrograde tracer to label the ipsi- and cross-hemispheric nigrostriatal pathways. Rats were then split into groups and unilaterally lesioned in the striatum or medial forebrain bundle of the tracer-injected hemisphere to induce varying levels of hemiparkinsonism. Finally, rats were treated with levodopa and tested for the expression of LID. Distinct subsets emerged from rats that underwent the same lesioning paradigm based on LID. Strikingly, non-dyskinetic rats had significant sparing of their cross-hemispheric nigrostriatal pathway projecting from the unlesioned hemisphere. In contrast, dyskinetic rats only had a small proportion of this cross-hemispheric nigrostriatal pathway survive lesioning. Crucially, both non-dyskinetic and dyskinetic rats had nearly identical levels of ipsi-hemispheric nigrostriatal pathway survival and parkinsonian motor deficits. Our data suggest that the survival of the cross-hemispheric nigrostriatal pathway plays a crucial role in preventing the expression of LID and represents a potentially novel target to halt the progression of this devastating side-effect of a common anti-PD therapeutic.


Asunto(s)
Antiparkinsonianos/efectos adversos , Discinesia Inducida por Medicamentos/fisiopatología , Levodopa/efectos adversos , Neostriado/fisiología , Trastornos Parkinsonianos/fisiopatología , Sustancia Negra/fisiología , Animales , Progresión de la Enfermedad , Discinesia Inducida por Medicamentos/etiología , Haz Prosencefálico Medial/fisiopatología , Oxidopamina/toxicidad , Trastornos Parkinsonianos/inducido químicamente , Ratas , Simpaticolíticos/toxicidad
6.
Exp Neurol ; 343: 113787, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34153321

RESUMEN

Opioid addiction can produce severe side effects including physical dependence and withdrawal. Perturbations of the gut microbiome have recently been shown to alter opioid-induced side-effects such as addiction, tolerance and dependence. In the present study, we investigated the influence of the gut microbiome on opioid withdrawal by evaluating the effects of fecal microbiota transplantation (FMT), antibiotic and probiotic treatments, and pharmacological inhibition of gut permeability in a mouse model of opioid dependence. Repeated intraperitoneal (i.p.) morphine treatment produced physical dependence that was quantified by measuring somatic signs of withdrawal (i.e. number of jumps) precipitated using the opioid antagonist naloxone. Morphine-dependent mice that received FMT from morphine-treated donor mice exhibited fewer naloxone-precipitated jumps compared to morphine-dependent counterparts receiving FMT from saline-treated donor mice. Microbial contents in the mouse cecum were altered by morphine treatment but were not differentially impacted by FMT. A broad-spectrum antibiotic cocktail (ABX) regimen reduced the bacterial load and attenuated naloxone-precipitated morphine withdrawal in morphine-dependent mice, whereas commercially available probiotic strains did not reliably alter somatic signs of opioid withdrawal. ML-7, a pharmacological inhibitor of gut permeability, reduced the morphine-induced increase in gut permeability in vivo but did not reliably alter somatic signs of naloxone-precipitated opioid withdrawal. Our results suggest that the gut microbiome impacts the development of physical dependence induced by chronic morphine administration, and that therapeutic manipulations of the gut microbiome may reduce opioid withdrawal.


Asunto(s)
Antibacterianos/administración & dosificación , Trasplante de Microbiota Fecal/métodos , Dependencia de Morfina/terapia , Naloxona/toxicidad , Antagonistas de Narcóticos/toxicidad , Síndrome de Abstinencia a Sustancias/terapia , Analgésicos Opioides/administración & dosificación , Animales , Terapia Combinada/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Dependencia de Morfina/tratamiento farmacológico , Dependencia de Morfina/metabolismo , Probióticos/administración & dosificación , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico , Síndrome de Abstinencia a Sustancias/metabolismo
7.
Cannabis Cannabinoid Res ; 6(5): 389-400, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33998863

RESUMEN

Introduction: Overdose fatalities associated with the opioid epidemic are predictably attributable to drug-induced respiratory depression. In terms of illicit opioid abuse, fentanyl is the synthetic opioid responsible for the largest number of overdose deaths. There is, therefore, an urgent need to identify safe and effective therapeutics that can attenuate fentanyl-induced respiratory depression. Identification of effective alternate analgesic strategies that lessen the respiratory depression associated with narcotics would also help improve current strategies for pain management. Our laboratory recently reported that the G protein-biased CB2 cannabinoid receptor agonist LY2828360 suppressed chemotherapy-induced neuropathic nociception and attenuated both morphine tolerance and physical dependence in paclitaxel-treated mice. However, the impact of LY2828360 on other undesirable side effects of opioids, such as opioid-induced respiratory depression, remains unknown. Materials and Methods: We used whole-body plethysmography to assess the impact of the CB2 cannabinoid agonist LY2828360 on fentanyl-induced respiratory depression using wild-type (WT) and CB2 knockout (CB2KO) mice. Results: Fentanyl reduced minute ventilation and respiratory frequency without altering tidal volume in both WT and CB2KO mice. In WT mice, the high dose of fentanyl (0.2 mg/kg intraperitoneal [i.p.]) produced a greater suppression of respiratory parameters compared with the low dose of fentanyl (0.1 mg/kg i.p.). Coadministration of a behaviorally active dose of LY2828360 (3 mg/kg i.p.) with fentanyl (0.2 mg/kg i.p.) attenuated fentanyl-induced respiratory depression in WT mice. Notably, LY2828360 (3 mg/kg i.p.) did not attenuate fentanyl-induced respiratory depression in CB2KO mice, consistent with mediation by CB2 receptors. Moreover, LY2828360 (3 mg/kg i.p.) alone lacked intrinsic effects on respiratory parameters in either WT or CB2KO mice. Conclusion: The combination of a CB2 agonist with fentanyl may represent a safer adjunctive therapeutic strategy compared with a narcotic analgesic alone by attenuating the development of opioid-induced respiratory depression. Moreover, the CB2 agonist, administered alone, did not alter respiration. Our findings suggest that the CB2 cannabinoid agonist LY2828360 may provide CB2-mediated protection against fentanyl-induced respiratory depression, a detrimental and unwanted side effect of opioid use and abuse.


Asunto(s)
Cannabinoides , Insuficiencia Respiratoria , Animales , Fentanilo/toxicidad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Purinas , Piranos , Receptores de Cannabinoides , Insuficiencia Respiratoria/inducido químicamente
8.
Eur J Pharmacol ; 886: 173544, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-32896549

RESUMEN

The opioid crisis has underscored the urgent need to identify safe and effective therapeutic strategies to overcome opioid-induced liabilities. We recently reported that LY2828360, a slowly signaling G protein-biased cannabinoid CB2 receptor agonist, suppresses neuropathic nociception and attenuates the development of tolerance to the opioid analgesic morphine in paclitaxel-treated mice. Whether beneficial effects of LY2828360 are dependent upon the presence of a pathological pain state are unknown and its impact on unwanted opioid-induced side-effects have never been investigated. Here, we asked whether LY2828360 would produce synergistic anti-allodynic effects with morphine in a paclitaxel model of chemotherapy-induced neuropathic pain and characterized its impact on opioid-induced reward and other unwanted side-effects associated with chronic opioid administration. Isobolographic analysis revealed that combinations of LY2828360 and morphine produced synergistic anti-allodynic effects in suppressing paclitaxel-induced mechanical allodynia. In wildtype (WT) mice, LY2828360 blocked morphine-induced reward in a conditioned place preference assay without producing reward or aversion when administered alone. The LY2828360-induced attenuation of morphine-induced reward was absent in CB2 knockout (CB2KO) mice. In the absence of a neuropathic pain state, LY2828360 partially attenuated naloxone-precipitated opioid withdrawal in morphine-dependent WT mice, and this withdrawal was itself markedly exacerbated in CB2KO mice. Moreover, LY2828360 did not reliably alter morphine-induced slowing of colonic transit or attenuate tolerance to morphine antinociceptive efficacy in the hot plate test of acute nociception. Our results suggest that cannabinoid CB2 receptor activation enhances the therapeutic properties of opioids while attenuating unwanted side-effects such as reward and dependence that occur with sustained opioid treatment.


Asunto(s)
Analgésicos Opioides/farmacología , Analgésicos/uso terapéutico , Agonistas de Receptores de Cannabinoides/farmacología , Dependencia de Morfina/prevención & control , Morfina/farmacología , Neuralgia/tratamiento farmacológico , Purinas/farmacología , Piranos/farmacología , Receptor Cannabinoide CB2/agonistas , Recompensa , Animales , Agonistas de Receptores de Cannabinoides/uso terapéutico , Condicionamiento Operante/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Hiperalgesia/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuralgia/inducido químicamente , Nocicepción/efectos de los fármacos , Paclitaxel , Purinas/uso terapéutico , Piranos/uso terapéutico , Receptor Cannabinoide CB2/genética , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico
9.
Front Mol Neurosci ; 13: 54, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32410959

RESUMEN

Opioid analgesics represent a critical treatment for chronic pain in the analgesic ladder of the World Health Organization. However, their use can result in a number of unwanted side-effects including incomplete efficacy, constipation, physical dependence, and overdose liability. Cannabinoids enhance the pain-relieving effects of opioids in preclinical studies and dampen unwanted side-effects resulting from excessive opioid intake. We recently reported that a CB1 positive allosteric modulator (PAM) exhibits antinociceptive efficacy in models of pathological pain and lacks the adverse side effects of direct CB1 receptor activation. In the present study, we evaluated whether a CB1 PAM would enhance morphine's therapeutic efficacy in an animal model of chemotherapy-induced neuropathic pain and characterized its impact on unwanted side-effects associated with chronic opioid administration. In paclitaxel-treated mice, both the CB1 PAM GAT211 and the opioid analgesic morphine reduced paclitaxel-induced behavioral hypersensitivities to mechanical and cold stimulation in a dose-dependent manner. Isobolographic analysis revealed that combinations of GAT211 and morphine resulted in anti-allodynic synergism. In paclitaxel-treated mice, a sub-threshold dose of GAT211 prevented the development of tolerance to the anti-allodynic effects of morphine over 20 days of once daily dosing. However, GAT211 did not reliably alter somatic withdrawal signs (i.e., jumps, paw tremors) in morphine-dependent neuropathic mice challenged with naloxone. In otherwise naïve mice, GAT211 also prolonged antinociceptive efficacy of morphine in the tail-flick test and reduced the overall right-ward shift in the ED50 for morphine to produce antinociception in the tail-flick test, consistent with attenuation of morphine tolerance. Pretreatment with GAT211 did not alter somatic signs of µ opioid receptor dependence in mice rendered dependent upon morphine via subcutaneous implantation of a morphine pellet. Moreover, GAT211 did not reliably alter µ-opioid receptor-mediated reward as measured by conditioned place preference to morphine. Our results suggest that a CB1 PAM may be beneficial in enhancing and prolonging the therapeutic properties of opioids while potentially sparing unwanted side-effects (e.g., tolerance) that occur with repeated opioid treatment.

10.
NPJ Parkinsons Dis ; 5: 27, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31815176

RESUMEN

Rapid-eye-movement (REM) sleep without atonia (RSWA), a marker of REM sleep behavior disorder (RBD), is frequently comorbid with Parkinson's disease (PD). Although rodent models are commonly used for studying PD, the neurobiological and behavioral correlates of RBD remain poorly understood. Therefore, we developed a behavior-based criteria to identify RSWA in the hemiparkinsonian rat model of PD. Video recordings of rats were analyzed, to develop a criteria consisting of behavioral signs that occurred during polysomnographically confirmed epochs of sleep-wake stages. The sleep-slouch, a postural shift of the body or head caused only by gravity, was identified as a unique behavioral sign of REM sleep onset and was altered in hemiparkinsonian rats during RSWA. There was a significant correlation between the behavior-based criteria and polysomnograms for all sleep-wake stages in control but not hemiparkinsonian rats indicating a deterioration of sleep-wake architecture in parkinsonism. We then tested the efficacy of levodopa in ameliorating RSWA using intermittent and around-the-clock (ATC) dosing regimens. ATC levodopa dosing at 4 mg/kg for 48 h caused a significant reduction of RSWA as measured by polysomnography and the behavioral-based criteria along with an amelioration of forelimb motor deficits. Our findings show that the phenomenological correlates of RSWA can be reliably characterized in the hemiparkinsonian rat model. ATC levodopa administration ameliorates RSWA in this model without deleterious consequences to the overall sleep-wake architecture and therapeutic benefits for parkinsonian motor deficits. These findings suggest that further study may allow for the application of a similar approach to treat RBD in PD patients.

11.
J Pharmacol Exp Ther ; 367(3): 551-563, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30275151

RESUMEN

Opioid-based therapies remain a mainstay for chronic pain management, but unwanted side effects limit therapeutic use. We compared efficacies of brain-permeant and -impermeant inhibitors of fatty acid amide hydrolase (FAAH) in suppressing neuropathic pain induced by the chemotherapeutic agent paclitaxel. Paclitaxel produced mechanical and cold allodynia without altering nestlet shredding or marble burying behaviors. We compared FAAH inhibitors that differ in their ability to penetrate the central nervous system for antiallodynic efficacy, pharmacological specificity, and synergism with the opioid analgesic morphine. (3'-(aminocarbonyl)[1,1'-biphenyl]- 3-yl)-cyclohexylcarbamate (URB597), a brain-permeant FAAH inhibitor, attenuated paclitaxel-induced allodynia via cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2) mechanisms. URB937, a brain-impermeant FAAH inhibitor, suppressed paclitaxel-induced allodynia through a CB1 mechanism only. 5-[4-(4-cyano-1-butyn-1-yl)phenyl]-1-(2,4-dichlorophenyl)-N-(1,1-dioxido-4-thiomorpholinyl)-4-methyl-1H-pyrazole-3-carboxamide (AM6545), a peripherally restricted CB1 antagonist, fully reversed the antiallodynic efficacy of N-cyclohexyl-carbamic acid, 3'-(aminocarbonyl)-6-hydroxy[1,1'- biphenyl]-3-yl ester (URB937) but only partially reversed that of URB597. Thus, URB937 suppressed paclitaxel-induced allodynia through a mechanism that was dependent upon peripheral CB1 receptor activation only. Antiallodynic effects of both FAAH inhibitors were reversed by N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251). Antiallodynic effects of URB597, but not URB937, were reversed by 6-iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-3-yl](4-methoxyphenyl)methanone (AM630). Isobolographic analysis revealed synergistic interactions between morphine and either URB597 or URB937 in reducing paclitaxel-induced allodynia. A leftward shift in the dose-response curve of morphine antinociception was observed when morphine was coadministered with either URB597 or URB937, consistent with morphine sparing. However, neither URB937 nor URB597 enhanced morphine-induced deficits in colonic transit. Thus, our findings suggest that FAAH inhibition may represent a therapeutic avenue to reduce the overall amount of opioid needed for treating neuropathic pain with potential to reduce unwanted side effects that accompany opioid administration.


Asunto(s)
Amidohidrolasas/metabolismo , Analgésicos Opioides/farmacología , Antineoplásicos/efectos adversos , Encéfalo/efectos de los fármacos , Tránsito Gastrointestinal/efectos de los fármacos , Morfina/farmacología , Nocicepción/efectos de los fármacos , Animales , Ácidos Araquidónicos/farmacología , Benzamidas/farmacología , Encéfalo/metabolismo , Cannabinoides/farmacología , Carbamatos/farmacología , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Indoles/farmacología , Ratones , Ratones Endogámicos C57BL , Morfolinas/farmacología , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Piperidinas/farmacología , Pirazoles/farmacología , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo
12.
Curr Biol ; 28(10): 1628-1634.e7, 2018 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-29754898

RESUMEN

Vivid episodic memories in people have been characterized as the replay of multiple unique events in sequential order [1-3]. The hippocampus plays a critical role in episodic memories in both people and rodents [2, 4-6]. Although rats remember multiple unique episodes [7, 8], it is currently unknown if animals "replay" episodic memories. Therefore, we developed an animal model of episodic memory replay. Here, we show that rats can remember a trial-unique stream of multiple episodes and the order in which these events occurred by engaging hippocampal-dependent episodic memory replay. We document that rats rely on episodic memory replay to remember the order of events rather than relying on non-episodic memories. Replay of episodic memories survives a long retention-interval challenge and interference from the memory of other events, which documents that replay is part of long-term episodic memory. The chemogenetic activating drug clozapine N-oxide (CNO), but not vehicle, reversibly impairs episodic memory replay in rats previously injected bilaterally in the hippocampus with a recombinant viral vector containing an inhibitory designer receptor exclusively activated by a designer drug (DREADD; AAV8-hSyn-hM4Di-mCherry). By contrast, two non-episodic memory assessments are unaffected by CNO, showing selectivity of this hippocampal-dependent impairment. Our approach provides an animal model of episodic memory replay, a process by which the rat searches its representations in episodic memory in sequential order to find information. Our findings using rats suggest that the ability to replay a stream of episodic memories is quite old in the evolutionary timescale.


Asunto(s)
Hipocampo/fisiología , Memoria Episódica , Recuerdo Mental/fisiología , Animales , Masculino , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...