Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nature ; 591(7848): 54-60, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33658692

RESUMEN

Growing interest in quantum computing for practical applications has led to a surge in the availability of programmable machines for executing quantum algorithms1,2. Present-day photonic quantum computers3-7 have been limited either to non-deterministic operation, low photon numbers and rates, or fixed random gate sequences. Here we introduce a full-stack hardware-software system for executing many-photon quantum circuit operations using integrated nanophotonics: a programmable chip, operating at room temperature and interfaced with a fully automated control system. The system enables remote users to execute quantum algorithms that require up to eight modes of strongly squeezed vacuum initialized as two-mode squeezed states in single temporal modes, a fully general and programmable four-mode interferometer, and photon number-resolving readout on all outputs. Detection of multi-photon events with photon numbers and rates exceeding any previous programmable quantum optical demonstration is made possible by strong squeezing and high sampling rates. We verify the non-classicality of the device output, and use the platform to carry out proof-of-principle demonstrations of three quantum algorithms: Gaussian boson sampling, molecular vibronic spectra and graph similarity8. These demonstrations validate the platform as a launchpad for scaling photonic technologies for quantum information processing.

2.
Phys Rev Lett ; 125(24): 240501, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33412067

RESUMEN

Using quantum walks (QWs) to rank the centrality of nodes in networks, represented by graphs, is advantageous compared to certain widely used classical algorithms. However, it is challenging to implement a directed graph via QW, since it corresponds to a non-Hermitian Hamiltonian and thus cannot be accomplished by conventional QW. Here we report the realizations of centrality rankings of a three-, a four-, and a nine-vertex directed graph with parity-time (PT) symmetric quantum walks by using high-dimensional photonic quantum states, multiple concatenated interferometers, and dimension dependent loss to achieve these. We demonstrate the advantage of the QW approach experimentally by breaking the vertex rank degeneracy in a four-vertex graph. Furthermore, we extend our experiment from single-photon to two-photon Fock states as inputs and realize the centrality ranking of a nine-vertex graph. Our work shows that a PT symmetric multiphoton quantum walk paves the way for realizing advanced algorithms.

3.
Phys Rev E ; 96(3-1): 032136, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29346966

RESUMEN

To extend the continuous-time quantum walk (CTQW) to simulate P distinguishable particles on a graph G composed of N vertices, the Hamiltonian of the system is expanded to act on an N^{P}-dimensional Hilbert space, in effect, simulating the multiparticle CTQW on graph G via a single-particle CTQW propagating on the Cartesian graph product G^{□P}. The properties of the Cartesian graph product have been well studied, and classical simulation of multiparticle CTQWs are common in the literature. However, the above approach is generally applied as is when simulating indistinguishable particles, with the particle statistics then applied to the propagated N^{P} state vector to determine walker probabilities. We address the following question: How can we modify the underlying graph structure G^{□P} in order to simulate multiple interacting fermionic CTQWs with a reduction in the size of the state space? In this paper, we present an algorithm for systematically removing "redundant" and forbidden quantum states from consideration, which provides a significant reduction in the effective dimension of the Hilbert space of the fermionic CTQW. As a result, as the number of interacting fermions in the system increases, the classical computational resources required no longer increases exponentially for fixed N.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA