Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Data ; 9(1): 565, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36100598

RESUMEN

The biogeography of bacterial communities is a key topic in Microbial Ecology. Regarding continental water, most studies are carried out in the northern hemisphere, leaving a gap on microorganism's diversity patterns on a global scale. South America harbours approximately one third of the world's total freshwater resources, and is one of these understudied regions. To fill this gap, we compiled 16S rRNA amplicon sequencing data of microbial communities across South America continental water ecosystems, presenting the first database µSudAqua[db]. The database contains over 866 georeferenced samples from 9 different ecoregions with contextual environmental information. For its integration and validation we constructed a curated database (µSudAqua[db.sp]) using samples sequenced by Illumina MiSeq platform with commonly used prokaryote universal primers. This comprised ~60% of the total georeferenced samples of the µSudAqua[db]. This compilation was carried out in the scope of the µSudAqua collaborative network and represents one of the most complete databases of continental water microbial communities from South America.


Asunto(s)
Microbiota , Bacterias/genética , Bases de Datos Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Microbiota/genética , ARN Ribosómico 16S/genética , América del Sur , Microbiología del Agua
2.
Environ Pollut ; 288: 117747, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34273767

RESUMEN

The ecological status of Pampean shallow lakes is evidenced by Cyanobacteria Harmful Blooms impairing these nutrient enriched, turbid and polymictic water bodies spread along the Central Plains of Argentina. Under the premise that shallow lakes are sentinels of global climate and eutrophication, a 3-year research in ten lakes located across a climatic gradient explored which factors drove the dynamics of cyanobacterial assemblages frequently driving to bloom prevalence. Contrarily to what is expected, the effect of seasonal temperature on cyanobacteria was subordinated to both the light environment of the water column, which was on turn highly affected by water level conditions, and to nutrient concentrations. Monthly samplings evidenced that cyanobacterial assemblages presented a broad-scale temporal dynamics mostly reflecting inter-annual growth patterns driven by water level fluctuations. Both species composition and biovolume gradually changed across a gradient of resources and conditions and hence, the scenario in each individual lake was unique with patterns at different temporal and spatial scales. More than 35 filamentous and colonial morphospecies constituted the assemblages of Pampean lakes: nostocaleans and chroococcaleans were inversely correlated in the prevailing interannual 3-cycled patterns.


Asunto(s)
Cianobacterias , Lagos , Argentina , Eutrofización , Humanos
3.
FEMS Microbiol Ecol ; 93(10)2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29029038

RESUMEN

The patterns and mechanisms underlying the genetic structure of microbial populations remain unresolved. Herein we investigated the role played by two non-mutually exclusive models (i.e. isolation by distance and isolation by environment) in shaping the genetic structure of lacustrine populations of a microalga (a freshwater Bathycoccaceae) in the Argentinean Patagonia. To our knowledge, this was the first study to investigate the genetic population structure in a South American microorganism. Population-level analyses based on ITS1-5.8S-ITS2 sequences revealed high levels of nucleotide and haplotype diversity within and among populations. Fixation index and a spatially explicit Bayesian analysis confirmed the occurrence of genetically distinct microalga populations in Patagonia. Isolation by distance and isolation by environment accounted for 38.5% and 17.7% of the genetic structure observed, respectively, whereas together these models accounted for 41% of the genetic differentiation. While our results highlighted isolation by distance and isolation by environment as important mechanisms in driving the genetic population structure of the microalga studied, none of these models (either alone or together) could explain the entire genetic differentiation observed. The unexplained variation in the genetic differentiation observed could be the result of founder events combined with rapid local adaptations, as proposed by the monopolisation hypothesis.


Asunto(s)
Chlorophyta/genética , Flujo Génico/genética , Variación Genética/genética , Genética de Población , Microalgas/genética , Aislamiento Reproductivo , Argentina , Teorema de Bayes , ADN Intergénico/genética , Geografía , Haplotipos/genética , Lagos , Microalgas/clasificación
4.
Eur J Protistol ; 60: 45-49, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28662491

RESUMEN

We characterized molecularly the first freshwater member ever reported for the family Bathycoccaceae in Lake Musters (Argentinean Patagonia). Members of this family are extremely numerous and play a key ecological role in marine systems as primary producers. We cloned a fragment comprising the SSU rRNA gene+ITS region from environmental DNA using specific mamiellophyte primers. The unique SSU rRNA gene sequence obtained clustered robustly with Bathycoccus prasinos. Analysis of the two-dimensional structure of the ITS region showed the presence of a typical supplementary helix in the ITS-2 region, a synapomorphy of Bathycoccaceae, which confirmed further its phylogenetic placement. We finally discuss the possible causes for the presence of this organism in Lake Musters.


Asunto(s)
Chlorophyta/clasificación , Chlorophyta/genética , Lagos , Filogenia , ADN Ribosómico/química , ADN Ribosómico/genética , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , Metagenómica , Especificidad de la Especie
5.
Environ Microbiol ; 18(12): 5249-5264, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27709755

RESUMEN

Microbial eukaryotes play important roles in aquatic ecosystem functioning. Unravelling their distribution patterns and biogeography provides important baseline information to infer the underlying mechanisms that regulate the biodiversity and complexity of ecosystems. We studied the distribution patterns and factors driving diversity gradients in microeukaryote communities (total, abundant, uncommon and rare community composition) along a latitudinal gradient of lakes distributed from Argentinean Patagonia to Maritime Antarctica using both denaturing gradient gel electrophoresis (DGGE) and high-throughput sequencing (Illumina HiSeq). DGGE and abundant Illumina operational taxonomic units (OTUs) showed both decreasing richness with latitude and significant differences between Patagonian and Antarctic lakes communities. In contrast, total richness did not change significantly across the latitudinal gradient, although evenness and diversity indices were significantly higher in Patagonian lakes. Beta-diversity was characterized by a high species turnover, influenced by both environmental and geographical descriptors, although this pattern faded in the rare community. Our results suggest the co-existence of a 'core biosphere' containing reduced number of abundant/dominant OTUs on which classical ecological rules apply, together with a much larger seedbank of rare OTUs driven by stochastic and reduced dispersal processes. These findings shed new light on the biogeographical patterns and forces structuring inland microeukaryote composition across broad spatial scales.


Asunto(s)
Eucariontes/aislamiento & purificación , Lagos/parasitología , Regiones Antárticas , Biodiversidad , Electroforesis en Gel de Gradiente Desnaturalizante , Eucariontes/clasificación , Eucariontes/genética , Geografía , Lagos/química
6.
Environ Microbiol Rep ; 5(2): 310-21, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23584972

RESUMEN

We assessed the influence of environmental factors in shaping the free-living bacterial community structure in a set of shallow lakes characterized by contrasting stable state patterns (clear-vegetated, inorganic-turbid and phytoplankton-turbid). Six temperate shallow lakes from the Pampa Plain (Argentina) were sampled over an annual cycle, and two fingerprinting techniques were applied: a 16S rDNA analysis was performed using denaturing gradient gel electrophoresis (DGGE) profiles, and a 16S-23S internally transcribed spacer region analysis was conducted by means of automated ribosomal intergenic spacer analysis (ARISA) profiles. Our results show that the steady state that characterized the different shallow lakes played a major role in structuring the community: the composition of free-living bacteria differed significantly between clear-vegetated, inorganic-turbid and phytoplankton-turbid shallow lakes. The state of the system was more important in determining these patterns than seasonality, geographical location or degree of hydrological connectivity. Moreover, this strong environmental control was particularly evident in the pattern observed in one of the lakes, which shifted from a clear to a turbid state over the course of the study. This lake showed a directional selection of species from a typical clear-like to a turbid-like community. The combined DGGE/ARISA approach revealed not only broad patterns among different alternative steady states, but also more subtle differences within different regimes.


Asunto(s)
Bacterias/aislamiento & purificación , Lagos/microbiología , Plancton/aislamiento & purificación , Argentina , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Biodiversidad , Electroforesis en Gel de Gradiente Desnaturalizante , Lagos/química , Filogenia , Plancton/clasificación , Plancton/genética , Plancton/crecimiento & desarrollo , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA