Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(8): e29090, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38638979

RESUMEN

As a passive motion and non-invasive treatment, theta-shaking exercise is considered an alternative to traditional active exercise for slowing down brain ageing. Here, we studied the influence of theta-shaking exercise on fibronectin type III domain containing 5/irisin (FNDC5/irisin) in the anterior nucleus of the thalamus, hippocampus, and medial prefrontal cortex (ATN-HPC-MPFC). Further, we assessed memory in senescence-accelerated prone mice (SAMP-10 mice) using a behavioural test to confirm the protective effect of theta-shaking exercise against age-related memory decline. SAMP-10 mice were subjected to theta-shaking exercise for 9-30 weeks. Mice then performed the T-maze test and passive avoidance task. Immunohistochemical analysis and ELISA were used to assess FNDC5/irisin, nerve growth factor (NGF), and neurotrophin 4/5 (NT4/5) expression in the ATN-HPC-MPFC. In the shaking group, FNDC5 was locally upregulated within the hippocampus and MPFC area rather than exhibiting even distribution throughout brain tissue. Irisin levels were generally higher in the control group. Meanwhile, hippocampal NGF levels were significantly higher in the shaking group, with no differences noted in neurotrophin levels. Theta-shaking preserved normal neurons in certain sub-regions. However, no beneficial changes in neuronal density were noted in the ATN. Theta-shaking exercise positively affects memory function in SAMP-10 mice. FNDC5 upregulation and higher levels of NGF, along with the potential involvement of irisin, may have contributed to the preservation of normal neuronal density in the hippocampus and MPFC subregions.

2.
Asian Pac J Cancer Prev ; 24(3): 873-879, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36974540

RESUMEN

OBJECTIVE: Exercise has been reported to suppress colorectal cancer; however, the mechanism of suppression by exercise and its effect on the Wnt pathway, which is particularly involved in the early stage of carcinogenesis, remain unclear. In this study, we subjected ApcMin/+ mice to exercise by shaking stimuli to investigate the mechanisms of suppressing colorectal cancer, and focused on the Ca2+ pathway, which is one of the ß-catenin-independent Wnt signaling pathways that suppress the accumulation of ß-catenin. METHODS: Mice in the exercise group were subjected to exercise by shaking stimuli for 30 min/session, 6 sessions/ week, for a total of 11 weeks. The number and diameter of intestinal polyps were calculated. Expression analysis of ß-catenin and Pak1 from the intestinal tract and Wnt5a-Pan and Wnt5a-Long from the gastrocnemius muscle was performed by western blotting. The expression of ß-catenin and Wnt5a-Pan was observed by immunohistochemical staining. RESULT: The levels of expression of ß-catenin and Pak1 in the small intestine were low in the exercise group, indicating that exercise suppressed the accumulation of ß-catenin. In the gastrocnemius muscle, the levels of expression of Wnt5a-Pan and Wnt5a-Long were significantly higher in the exercise group (p < 0.05). Histological analysis revealed that the percentage of large polyps was significantly lower in the exercise group than in the control group (p < 0.01), revealing that exercise suppressed the growth of polyps. In addition, the villi/crypt ratio (V/C ratio) was significantly higher in the exercise group, suggesting the suppression of exercise-induced local inflammation in the small intestine. CONCLUSION: We believe that the mechanism of polyp growth suppression is related to the inflammatory and not the Wnt pathway. This study clarified the growth-suppressing effect of a novel exercise method on cancer. We believe that its development and clinical application might open new possibilities for the prevention treatment of colorectal cancer.


Asunto(s)
Neoplasias Colorrectales , Vía de Señalización Wnt , Ratones , Animales , beta Catenina/metabolismo , Carcinogénesis , Proliferación Celular , Neoplasias Colorrectales/patología
3.
Exp Gerontol ; 171: 112024, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36372283

RESUMEN

INTRODUCTION: The decline in spatial working memory is one of the earliest signs of normal brain aging. OBJECTIVE: We developed a novel physical exercise method, termed the "shaking exercise," to slow down this process. METHODS: The experimental protocol included administering the shaking exercise for 8-32 weeks in male senescence-accelerated mouse prone 10 (SAMP-10). They were subjected to the T-maze test, followed by immunohistochemical analysis, to assess the influence of the shaking exercise on the M1 muscarinic acetylcholine receptor (CHRM1) and α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) of the dorsal hippocampus and medial prefrontal cortex (dHC-mPFC). RESULTS: The T-maze test demonstrated that the shaking group had less hesitation in the face of selecting direction at week 24. In the immunohistochemical analysis, more CHRM1s were in the CA3 subregion and more AMPARs were in the subiculum. CHRM1s and AMPARs were maintained in the CA1 region and the mPFC. The CHRM1s seem to have a positive effect on the AMPAR in the dentate gyrus (DG) region and the CA3 region. In the CA1 region, CHRM1s were negatively correlated with AMPARs. In addition, high-density neurons were expressed in the shaking group in the upstream DG, the middle part and the distal part of CA3, the distal part of CA1, and the mPFC. CONCLUSIONS: Our results raise the possibility that maintenance of the spatial working memory effect observed with the shaking exercise is driven in part by the uneven affection of CHRM1s and AMPARs in the dHC-mPFC circuit system and significantly maintains the neuronal expression in the dHC-mPFC.


Asunto(s)
Memoria a Corto Plazo , Memoria Espacial , Masculino , Ratones , Animales , Memoria a Corto Plazo/fisiología , Hipocampo/metabolismo , Corteza Prefrontal/fisiología , Aprendizaje por Laberinto
4.
Dement Geriatr Cogn Disord ; 51(5): 434-440, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36516802

RESUMEN

INTRODUCTION: Although exercise can prevent cognitive decline due to aging, few elderly individuals are able to exercise for long. Therefore, an exercise method for older adults that is feasible for a long duration without overexertion is necessary. In this study, we focused on exercise by shaking. This study examined the possibility to prevent the decline in memory through regular and long-term shaking exercise using a senescence-accelerated mouse (SAM) model. Behavioral analysis was conducted, and histological changes in the mouse brain were examined to evaluate whether this stimulation method could become a novel exercise method. MATERIALS AND METHODS: The shaking exercise was applied to SAMP10 mice for 30 min 3 times per week for 25 continuous weeks. Behavioral analysis included a step-through passive avoidance test, whereas the histological analysis involved immunohistochemical staining using the anti-glutamate receptor (α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptors [AMPAR]) antibody in the hippocampus. The number and area of nerve cells in the hippocampal regions were measured and compared between groups. RESULTS: Behavioral analysis revealed that the shaking group retained memory longer than the control group, and memory capacity decline was suppressed. Additionally, histological examination showed that the shaking group had a higher number of AMPAR receptor-positive neurons per area in the hippocampal CA1 and CA3 regions than the control group, suggesting that degeneration and shedding of neurons due to aging was suppressed. DISCUSSION/CONCLUSION: We believe that shaking could become an exercise therapy that can reduce the decline in memory with aging and expect its human application in the future.


Asunto(s)
Hipocampo , Receptores AMPA , Ratones , Humanos , Animales , Anciano , Receptores AMPA/metabolismo , Hipocampo/metabolismo , Neuronas , Modelos Animales de Enfermedad , Envejecimiento/psicología
5.
Fungal Genet Biol ; 96: 1-11, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27634187

RESUMEN

In mammals, cytosolic phospholipases A2 (cPLA2s) play important physiological roles by releasing arachidonic acid, a precursor for bioactive lipid mediators, from the biological membranes. In contrast, fungal cPLA2-like proteins are much less characterized and their roles have remained elusive. AoPlaA is a cPLA2-like protein in the filamentous fungus Aspergillus oryzae which, unlike mammalian cPLA2, localizes to mitochondria. In this study, we investigated the biochemical and physiological functions of AoPlaA. Recombinant AoPlaA produced in E. coli displayed Ca2+-independent lipolytic activity. Mass spectrometry analysis demonstrated that AoPlaA displayed PLA2 activity to phosphatidylethanolamine (PE), but not to other phospholipids, and generated 1-acylated lysoPE. Catalytic site mutants of AoPlaA displayed almost no or largely reduced activity to PE. Consistent with PE-specific activity of AoPlaA, AoplaA-overexpressing strain showed decreased PE content in the mitochondrial fraction. In contrast, AoplaA-disruption strain displayed increased content of cardiolipin. AoplaA-overexpressing strain, but not its counterparts overexpressing the catalytic site mutants, exhibited retarded growth at low temperature, possibly because of the impairment of the mitochondrial function caused by excess degradation of PE. These results suggest that AoPlaA is a novel PE-specific PLA2 that plays a regulatory role in the maintenance of mitochondrial phospholipid composition.


Asunto(s)
Aspergillus oryzae/enzimología , Mitocondrias/enzimología , Fosfatidiletanolaminas/metabolismo , Fosfolipasas A2/metabolismo , Fosfolípidos/metabolismo , Aspergillus oryzae/crecimiento & desarrollo , Escherichia coli/genética , Fosfolipasas A2/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Temperatura
6.
Plant Physiol ; 165(4): 1575-1590, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24906355

RESUMEN

The major plant polyamines (PAs) are the tetraamines spermine (Spm) and thermospermine (T-Spm), the triamine spermidine, and the diamine putrescine. PA homeostasis is governed by the balance between biosynthesis and catabolism; the latter is catalyzed by polyamine oxidase (PAO). Arabidopsis (Arabidopsis thaliana) has five PAO genes, AtPAO1 to AtPAO5, and all encoded proteins have been biochemically characterized. All AtPAO enzymes function in the back-conversion of tetraamine to triamine and/or triamine to diamine, albeit with different PA specificities. Here, we demonstrate that AtPAO5 loss-of-function mutants (pao5) contain 2-fold higher T-Spm levels and exhibit delayed transition from vegetative to reproductive growth compared with that of wild-type plants. Although the wild type and pao5 are indistinguishable at the early seedling stage, externally supplied low-dose T-Spm, but not other PAs, inhibits aerial growth of pao5 mutants in a dose-dependent manner. Introduction of wild-type AtPAO5 into pao5 mutants rescues growth and reduces the T-Spm content, demonstrating that AtPAO5 is a T-Spm oxidase. Recombinant AtPAO5 catalyzes the conversion of T-Spm and Spm to triamine spermidine in vitro. AtPAO5 specificity for T-Spm in planta may be explained by coexpression with T-Spm synthase but not with Spm synthase. The pao5 mutant lacking T-Spm oxidation and the acl5 mutant lacking T-Spm synthesis both exhibit growth defects. This study indicates a crucial role for T-Spm in plant growth and development.

7.
Am J Physiol Cell Physiol ; 302(11): C1652-60, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22460716

RESUMEN

The SLC17 anion transporter family comprises nine members that transport various organic anions in membrane potential (Δψ)- and Cl(-)-dependent manners. Although the transport substrates and physiological relevance of the majority of the members have already been determined, little is known about SLC17A4 proteins known to be Na(+)-phosphate cotransporter homologue (NPT homologue). In the present study, we investigated the expression and transport properties of human SLC17A4 protein. Using specific antibodies, we found that a human NPT homologue is specifically expressed and present in the intestinal brush border membrane. Proteoliposomes containing the purified protein took up radiolabeled p-aminohippuric acid (PAH) in a Cl(-)-dependent manner at the expense of an electrochemical gradient of protons, especially Δψ, across the membrane. The Δψ- and Cl(-)-dependent PAH uptake was inhibited by diisothiocyanostilbene-2,2'-disulfonic acid and Evans blue, common inhibitors of SLC17 family members. cis-Inhibition studies revealed that various anionic compounds, such as hydrophilic nonsteroidal anti-inflammatory drugs, pravastatin, and urate inhibited the PAH uptake. Proteoliposomes took up radiolabeled urate, with the uptake having properties similar to those of PAH uptake. These results strongly suggested that the human NPT homologue acts as a polyspecific organic anion exporter in the intestines. Since SLC17A1 protein (NPT1) and SLC17A3 protein (NPT4) are responsible for renal urate extrusion, our results reveal the possible involvement of a NPT homologue in urate extrusion from the intestinal duct.


Asunto(s)
Intestino Delgado/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo I/metabolismo , Ácido 4,4'-Diisotiocianostilbeno-2,2'-Disulfónico/farmacología , Animales , Transporte Biológico , Humanos , Intestino Delgado/fisiología , Masculino , Potenciales de la Membrana , Ratones , Pravastatina/farmacología , Proteolípidos/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo I/inmunología , Ácido Úrico/metabolismo , Ácido Úrico/farmacología , Ácido p-Aminohipúrico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...