Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 271(Pt 1): 132521, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38772457

RESUMEN

Herein, GO (graphene oxide) or rGO (reduced graphene oxide) which is produced by the green synthesis method using plant extract (Laurus nobilis) was incorporated into a polymeric structure consisting of carboxymethyl cellulose (CMC) and polyethylene glycol (PEG) to produce a wound dressing material with enhanced mechanical and electrical properties. The effect of GO and rGO on the wound dressing features of the produced materials was investigated and compared to each other. Conductivity tests demonstrated that rGO contributed more significantly to the electrical conductivity than GO. While rGO-CMC/PEG/CA reached 3.01 × 10-6 S.cm-1 as the conductivity value, that of GO-CMC/PEG/CA was determined as 0.85 × 10-6 S.cm-1. As for the mechanical tests, it was seen that rGO achieved the best results in terms of elastic modulus (588.62 N/mm2), tensile strength (94.95 MPa) and elongation at break (17.64 %) compared to GO reinforced and pure hydrogel. Curcumin and ascorbic acid were used for antibiotic-free wound treatment and their release kinetics were also modeled. The results showed that rGO reinforced hydrogel provided a more controlled release. All results assured that both the produced GO reinforced and especially rGO reinforced hydrogels could be utilized as modern wound dressing materials with suitable properties to achieve remarkable results for wound healing.


Asunto(s)
Vendajes , Carboximetilcelulosa de Sodio , Grafito , Tecnología Química Verde , Carboximetilcelulosa de Sodio/química , Grafito/química , Cicatrización de Heridas/efectos de los fármacos , Polietilenglicoles/química , Curcumina/química , Curcumina/farmacología , Hidrogeles/química , Hidrogeles/síntesis química , Conductividad Eléctrica , Resistencia a la Tracción , Ácido Ascórbico/química
2.
J Biomed Mater Res A ; 111(2): 209-223, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36213938

RESUMEN

Layered double hydroxides (LDHs) offer unique source of inspiration for design of bone mimetic biomaterials due to their superior mechanical properties, drug delivery capability and regulation cellular behaviors, particularly by divalent metal cations in their structure. Three-dimensional (3D) bioprinting of LDHs holds great promise as a novel strategy thanks to highly tunable physiochemical properties and shear-thinning ability of LDHs, which allow shape fidelity after deposition. Herein, we introduce a straightforward strategy for extrusion bioprinting of cell laden nanocomposite hydrogel bioink of gelatin methacryloyl (GelMA) biopolymer and LDHs nanoparticles. First, we synthesized LDHs by co-precipitation process and systematically examined the effect of LDHs addition on printing parameters such as printing pressure, extrusion rate, printing speed, and finally bioink printability in creating grid-like constructs. The developed hydrogel bioinks provided precise control over extrudability, extrusion uniformity, and structural integrity after deposition. Based on the printability and rheological analysis, the printability could be altered by controlling the concentration of LDHs, and printability was found to be ideal with the addition of 3 wt % LDHs. The addition of LDHs resulted in remarkably enhanced compressive strength from 652 kPa (G-LDH0) to 1168 kPa (G-LDH3). It was shown that the printed nanocomposite hydrogel scaffolds were able to support encapsulated osteoblast survival, spreading, and proliferation in the absence of any osteoinductive factors taking advantage of LDHs. In addition, cells encapsulated in G-LDH3 had a larger cell spreading area and higher cell aspect ratio than those encapsulated in G-LDH0. Altogether, the results demonstrated that the developed GelMA/LDHs nanocomposite hydrogel bioink revealed a high potential for extrusion bioprinting with high structural fidelity to fabricate implantable 3D hydrogel constructs for repair of bone defects.


Asunto(s)
Nanogeles
3.
J Biomater Appl ; 37(1): 48-54, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35452304

RESUMEN

Three-dimensional (3D)-bioprinting as an emerging approach for tissue engineering possesses the promise to create highly mimicked organs or tissues by using computer-aided design. For biomedical applications in tissue engineering in our previous work, we developed an optimized nanocomposite bioink based on methylacrylated gelatin (GelMA), methylacrylated chitosan (ChitMA), and double-layered hydroxide (LDHs) nanoparticles by using 3D-bioprinting technology. Herein, we used the previous formulation to fabricate human bone marrow mesenchymal stem cells (hBMMSCs)-laden nanocomposite bioinks. The effect of LDHs nanoparticles on the cellular behaviors of the encapsulated-hBMMSCs in the scaffolds was evaluated for the first time. Live/Dead, PrestoBlue, and DAPI/Actin analysis were carried out to assess the cell viability, proliferation rate, and cellular morphology of encapsulated hBMMSCs within the scaffolds. In addition, osteogenic differentiation studies were performed culturing the scaffolds for up to 21 days. Results show that LDHs nanoparticles in the GelMA/ChitMA scaffold formulation increased the viability of hBMMSCs, did not cause any adverse effect on the proliferation rate, cell morphology of the hBMMSCs, and increased the Runx2 protein expression of the encapsulated-hBMMSCs in the scaffolds. This study progresses the LDHs containing nanocomposite bioink for cell printing applications in tissue engineering.


Asunto(s)
Nanopartículas , Andamios del Tejido , Gelatina , Humanos , Hidróxidos , Osteogénesis , Impresión Tridimensional , Células Madre , Ingeniería de Tejidos/métodos
4.
J Mater Chem B ; 10(15): 2912-2925, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35297911

RESUMEN

Corneal defects are associated with corneal tissue engineering in terms of vision loss. The treatment of corneal defects is an important clinical challenge due to a uniform corneal thickness and the apparent lack of regenerative ability. In this work, we synthesized a biocompatible and photocrosslinkable ocular tissue adhesive composite hydrogel prepared by using methacrylated gelatin (GelMA), which is called the most favorable derivative of gelatin used as a tissue adhesive, silk fibroin (SF), and GelMA/SF (GS) with high adhesion behaviours for use in corneal injuries. The adhesion behaviours of the materials prepared in the presence of silk fibroin were improved. Importantly, the effect of different UV curing times on the adhesion properties of the prepared materials was also investigated. The prepared GS tissue adhesives showed high physiological adhesion. GS can be modulated to increase its adhesive strength up to 3 times compared to G. GS was also found to be biocompatible and have a high healing potential. In addition, the obtained transmission value of GS is also close to that of the human cornea. GS supported cellular adhesion and proliferation. The burst pressure strength for fresh cornea of the GS-60s sealants (144.5 ± 13 kPa) was determined to be higher than that of the G-60s sealants (52.6 ± 33.5 kPa).


Asunto(s)
Perforación Corneal , Fibroínas , Adhesivos Tisulares , Adhesivos , Fibroínas/farmacología , Gelatina/farmacología , Humanos , Adhesivos Tisulares/farmacología , Adhesivos Tisulares/uso terapéutico , Andamios del Tejido
5.
RSC Adv ; 11(48): 30237-30252, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-35480250

RESUMEN

Layered double hydroxides (LDHs), when incorporated into biomaterials, provide a tunable composition, controllable particle size, anion exchange capacity, pH-sensitive solubility, high-drug loading efficiency, efficient gene and drug delivery, controlled release and effective intracellular uptake, natural biodegradability in an acidic medium, and negligible toxicity. In this review, we study potential applications of LDH-based nanocomposite scaffolds for tissue engineering. We address how LDHs provide new solutions for nanostructure stability and enhance in vivo studies' success.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA