Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 59(53): 8234-8237, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37310188

RESUMEN

Nonribosomal peptide synthetases produce many important peptide natural products and are centred around carrier proteins (CPs) that deliver intermediates to various catalytic domains. We show that the replacement of CP substrate thioesters by stabilised ester analogues leads to active condensation domain complexes, whereas amide stabilisation generates non-functional complexes.


Asunto(s)
Biosíntesis de Péptidos Independientes de Ácidos Nucleicos , Péptido Sintasas , Péptido Sintasas/química , Dominio Catalítico , Péptidos/metabolismo , Panteteína
2.
Front Chem ; 10: 868240, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464232

RESUMEN

Cytochrome P450 enzymes (P450s) are a superfamily of monooxygenases that utilize a cysteine thiolate-ligated heme moiety to perform a wide range of demanding oxidative transformations. Given the oxidative power of the active intermediate formed within P450s during their active cycle, it is remarkable that these enzymes can avoid auto-oxidation and retain the axial cysteine ligand in the deprotonated-and thus highly acidic-thiolate form. While little is known about the process of heme incorporation during P450 folding, there is an overwhelming preference for one heme orientation within the P450 active site. Indeed, very few structures to date contain an alternate heme orientation, of which two are OxyA homologs from glycopeptide antibiotic (GPA) biosynthesis. Given the apparent preference for the unusual heme orientation shown by OxyA enzymes, we investigated the OxyA homolog from kistamicin biosynthesis (OxyAkis), which is an atypical GPA. We determined that OxyAkis is highly sensitive to oxidative damage by peroxide, with both UV and EPR measurements showing rapid bleaching of the heme signal. We determined the structure of OxyAkis and found a mixed population of heme orientations present in this enzyme. Our analysis further revealed the possible modification of the heme moiety, which was only present in samples where the alternate heme orientation was present in the protein. These results suggest that the typical heme orientation in cytochrome P450s can help prevent potential damage to the heme-and hence deactivation of the enzyme-during P450 catalysis. It also suggests that some P450 enzymes involved in GPA biosynthesis may be especially prone to oxidative damage due to the heme orientation found in their active sites.

3.
Nat Commun ; 12(1): 2511, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33947858

RESUMEN

Non-ribosomal peptide synthetases are important enzymes for the assembly of complex peptide natural products. Within these multi-modular assembly lines, condensation domains perform the central function of chain assembly, typically by forming a peptide bond between two peptidyl carrier protein (PCP)-bound substrates. In this work, we report structural snapshots of a condensation domain in complex with an aminoacyl-PCP acceptor substrate. These structures allow the identification of a mechanism that controls access of acceptor substrates to the active site in condensation domains. The structures of this complex also allow us to demonstrate that condensation domain active sites do not contain a distinct pocket to select the side chain of the acceptor substrate during peptide assembly but that residues within the active site motif can instead serve to tune the selectivity of these central biosynthetic domains.


Asunto(s)
Aminoácidos/química , Dominio Catalítico , Péptido Sintasas/química , Péptidos/química , Sideróforos/química , Secuencia de Aminoácidos , Cromatografía Líquida de Alta Presión , Coenzima A/química , Cristalografía por Rayos X , Expresión Génica , Modelos Moleculares , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mutación , Dominios Proteicos , Estructura Terciaria de Proteína , Alineación de Secuencia , Sideróforos/biosíntesis , Especificidad por Sustrato , Thermobifida/química , Thermobifida/metabolismo
4.
Nanoscale Adv ; 3(9): 2607-2616, 2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-36134162

RESUMEN

The increasing resistance of pathogenic microbes to antimicrobials and the shortage of antibiotic drug discovery programs threaten the clinical use of antibiotics. This threat calls for the development of new methods for control of drug-resistant microbial pathogens. We have designed, synthesised and characterised an antimicrobial material formed via the self-assembly of a population of two distinct ß-peptide monomers, a lipidated tri-ß-peptide (ß3-peptide) and a novel ß3-peptide conjugated to a glycopeptide antibiotic, vancomycin. The combination of these two building blocks resulted in fibrous assemblies with distinctive structures determined by atomic force microscopy and electron microscopy. These fibres inhibited the growth of methicillin resistant Staphylococcus aureus (MRSA) and associated directly with the bacteria, acting as a peptide nanonet with fibre nucleation sites on the bacteria observed by electron microscopy and confocal microscopy. Our results provide insights into the design of peptide based supramolecular assemblies with antibacterial activity and establish an innovative strategy to develop self-assembled antimicrobial materials for future biomedical application.

5.
mSystems ; 5(3)2020 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-32430409

RESUMEN

F420 is a low-potential redox cofactor used by diverse bacteria and archaea. In mycobacteria, this cofactor has multiple roles, including adaptation to redox stress, cell wall biosynthesis, and activation of the clinical antitubercular prodrugs pretomanid and delamanid. A recent biochemical study proposed a revised biosynthesis pathway for F420 in mycobacteria; it was suggested that phosphoenolpyruvate served as a metabolic precursor for this pathway, rather than 2-phospholactate as long proposed, but these findings were subsequently challenged. In this work, we combined metabolomic, genetic, and structural analyses to resolve these discrepancies and determine the basis of F420 biosynthesis in mycobacterial cells. We show that, in whole cells of Mycobacterium smegmatis, phosphoenolpyruvate rather than 2-phospholactate stimulates F420 biosynthesis. Analysis of F420 biosynthesis intermediates present in M. smegmatis cells harboring genetic deletions at each step of the biosynthetic pathway confirmed that phosphoenolpyruvate is then used to produce the novel precursor compound dehydro-F420-0. To determine the structural basis of dehydro-F420-0 production, we solved high-resolution crystal structures of the enzyme responsible (FbiA) in apo-, substrate-, and product-bound forms. These data show the essential role of a single divalent cation in coordinating the catalytic precomplex of this enzyme and demonstrate that dehydro-F420-0 synthesis occurs through a direct substrate transfer mechanism. Together, these findings resolve the biosynthetic pathway of F420 in mycobacteria and have significant implications for understanding the emergence of antitubercular prodrug resistance.IMPORTANCE Mycobacteria are major environmental microorganisms and cause many significant diseases, including tuberculosis. Mycobacteria make an unusual vitamin-like compound, F420, and use it to both persist during stress and resist antibiotic treatment. Understanding how mycobacteria make F420 is important, as this process can be targeted to create new drugs to combat infections like tuberculosis. In this study, we show that mycobacteria make F420 in a way that is different from other bacteria. We studied the molecular machinery that mycobacteria use to make F420, determining the chemical mechanism for this process and identifying a novel chemical intermediate. These findings also have clinical relevance, given that two new prodrugs for tuberculosis treatment are activated by F420.

6.
Nature ; 578(7796): 627-630, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32025030

RESUMEN

Thyroglobulin (TG) is the protein precursor of thyroid hormones, which are essential for growth, development and the control of metabolism in vertebrates1,2. Hormone synthesis from TG occurs in the thyroid gland via the iodination and coupling of pairs of tyrosines, and is completed by TG proteolysis3. Tyrosine proximity within TG is thought to enable the coupling reaction but hormonogenic tyrosines have not been clearly identified, and the lack of a three-dimensional structure of TG has prevented mechanistic understanding4. Here we present the structure of full-length human thyroglobulin at a resolution of approximately 3.5 Å, determined by cryo-electron microscopy. We identified all of the hormonogenic tyrosine pairs in the structure, and verified them using site-directed mutagenesis and in vitro hormone-production assays using human TG expressed in HEK293T cells. Our analysis revealed that the proximity, flexibility and solvent exposure of the tyrosines are the key characteristics of hormonogenic sites. We transferred the reaction sites from TG to an engineered tyrosine donor-acceptor pair in the unrelated bacterial maltose-binding protein (MBP), which yielded hormone production with an efficiency comparable to that of TG. Our study provides a framework to further understand the production and regulation of thyroid hormones.


Asunto(s)
Microscopía por Crioelectrón , Tiroglobulina/química , Tiroglobulina/ultraestructura , Proteínas Bacterianas/química , Células HEK293 , Humanos , Proteínas de Unión a Maltosa/química , Modelos Moleculares , Mutación , Reproducibilidad de los Resultados , Solventes/química , Tiroglobulina/genética , Hormonas Tiroideas/biosíntesis , Hormonas Tiroideas/metabolismo , Tirosina/química , Tirosina/genética , Tirosina/metabolismo
7.
Nat Commun ; 10(1): 2613, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31197182

RESUMEN

Kistamicin is a divergent member of the glycopeptide antibiotics, a structurally complex class of important, clinically relevant antibiotics often used as the last resort against resistant bacteria. The extensively crosslinked structure of these antibiotics that is essential for their activity makes their chemical synthesis highly challenging and limits their production to bacterial fermentation. Kistamicin contains three crosslinks, including an unusual 15-membered A-O-B ring, despite the presence of only two Cytochrome P450 Oxy enzymes thought to catalyse formation of such crosslinks within the biosynthetic gene cluster. In this study, we characterise the kistamicin cyclisation pathway, showing that the two Oxy enzymes are responsible for these crosslinks within kistamicin and that they function through interactions with the X-domain, unique to glycopeptide antibiotic biosynthesis. We also show that the kistamicin OxyC enzyme is a promiscuous biocatalyst, able to install multiple crosslinks into peptides containing phenolic amino acids.


Asunto(s)
Actinobacteria/metabolismo , Antibacterianos/metabolismo , Vías Biosintéticas/genética , Glicopéptidos/biosíntesis , Péptidos/metabolismo , Actinobacteria/genética , Antibacterianos/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biocatálisis , Ciclización/genética , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Glicopéptidos/química , Familia de Multigenes , Péptidos/química
8.
Proc Natl Acad Sci U S A ; 116(8): 2913-2918, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30705105

RESUMEN

The protein Ebony from Drosophila melanogaster plays a central role in the regulation of histamine and dopamine in various tissues through condensation of these amines with ß-alanine. Ebony is a rare example of a nonribosomal peptide synthetase (NRPS) from a higher eukaryote and contains a C-terminal sequence that does not correspond to any previously characterized NRPS domain. We have structurally characterized this C-terminal domain and have discovered that it adopts the aryl-alkylamine-N-acetyl transferase (AANAT) fold, which is unprecedented in NRPS biology. Through analysis of ligand-bound structures, activity assays, and binding measurements, we have determined how this atypical condensation domain is able to provide selectivity for both the carrier protein-bound amino acid and the amine substrates, a situation that remains unclear for standard condensation domains identified to date from NRPS assembly lines. These results demonstrate that the C terminus of Ebony encodes a eukaryotic example of an alternative type of NRPS condensation domain; they also illustrate how the catalytic components of such assembly lines are significantly more diverse than a minimal set of conserved functional domains.


Asunto(s)
N-Acetiltransferasa de Arilalquilamina/química , Proteínas de Unión al ADN/química , Proteínas de Drosophila/química , Péptido Sintasas/química , Animales , Dominio Catalítico , Cristalografía por Rayos X , Drosophila melanogaster/química , Dominios Proteicos , Pliegue de Proteína , Estructura Terciaria de Proteína
9.
Nat Prod Rep ; 35(11): 1120-1139, 2018 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-30207358

RESUMEN

Covering: up to July 2018 Non-ribosomal peptide synthetase (NRPS) machineries are complex, multi-domain proteins that are responsible for the biosynthesis of many important, peptide-derived compounds. By decoupling peptide synthesis from the ribosome, NRPS assembly lines are able to access a significant pool of amino acid monomers for peptide synthesis. This is combined with a modular protein architecture that allows for great variation in stereochemistry, peptide length, cyclisation state and further modifications. The architecture of NRPS assembly lines relies upon a repetitive set of catalytic domains, which are organised into modules responsible for amino acid incorporation. Central to NRPS-mediated biosynthesis is the carrier protein (CP) domain, to which all intermediates following initial monomer activation are bound during peptide synthesis up until the final handover to the thioesterase domain that cleaves the mature peptide from the NRPS. This mechanism makes understanding the protein-protein interactions that occur between different NRPS domains during peptide biosynthesis of crucial importance to understanding overall NRPS function. This endeavour is also highly challenging due to the inherent flexibility and dynamics of NRPS systems. In this review, we present the current state of understanding of the protein-protein interactions that govern NRPS-mediated biosynthesis, with a focus on insights gained from structural studies relating to CP domain interactions within these impressive peptide assembly lines.


Asunto(s)
Biosíntesis de Péptidos Independientes de Ácidos Nucleicos/fisiología , Péptido Sintasas/química , Péptido Sintasas/metabolismo , Mapas de Interacción de Proteínas/fisiología , Aminoácidos/metabolismo , Ciclización , Modelos Moleculares , Péptidos/química , Péptidos/metabolismo , Conformación Proteica , Dominios Proteicos , Tioléster Hidrolasas/química , Tioléster Hidrolasas/metabolismo
10.
Elife ; 72018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29469806

RESUMEN

MreB is essential for rod shape in many bacteria. Membrane-associated MreB filaments move around the rod circumference, helping to insert cell wall in the radial direction to reinforce rod shape. To understand how oriented MreB motion arises, we altered the shape of Bacillus subtilis. MreB motion is isotropic in round cells, and orientation is restored when rod shape is externally imposed. Stationary filaments orient within protoplasts, and purified MreB tubulates liposomes in vitro, orienting within tubes. Together, this demonstrates MreB orients along the greatest principal membrane curvature, a conclusion supported with biophysical modeling. We observed that spherical cells regenerate into rods in a local, self-reinforcing manner: rapidly propagating rods emerge from small bulges, exhibiting oriented MreB motion. We propose that the coupling of MreB filament alignment to shape-reinforcing peptidoglycan synthesis creates a locally-acting, self-organizing mechanism allowing the rapid establishment and stable maintenance of emergent rod shape.


Asunto(s)
Bacillus subtilis/citología , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Pared Celular/metabolismo , Peptidoglicano/metabolismo , Transporte de Proteínas
11.
Subcell Biochem ; 84: 245-266, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28500528

RESUMEN

A diverse set of protein polymers, structurally related to actin filaments contributes to the organization of bacterial cells as cytomotive or cytoskeletal filaments. This chapter describes actin homologs encoded by bacterial chromosomes. MamK filaments, unique to magnetotactic bacteria, help establishing magnetic biological compasses by interacting with magnetosomes. Magnetosomes are intracellular membrane invaginations containing biomineralized crystals of iron oxide that are positioned by MamK along the long-axis of the cell. FtsA is widespread across bacteria and it is one of the earliest components of the divisome to arrive at midcell, where it anchors the cell division machinery to the membrane. FtsA binds directly to FtsZ filaments and to the membrane through its C-terminus. FtsA shows altered domain architecture when compared to the canonical actin fold. FtsA's subdomain 1C replaces subdomain 1B of other members of the actin family and is located on the opposite side of the molecule. Nevertheless, when FtsA assembles into protofilaments, the protofilament structure is preserved, as subdomain 1C replaces subdomain IB of the following subunit in a canonical actin filament. MreB has an essential role in shape-maintenance of most rod-shaped bacteria. Unusually, MreB filaments assemble from two protofilaments in a flat and antiparallel arrangement. This non-polar architecture implies that both MreB filament ends are structurally identical. MreB filaments bind directly to membranes where they interact with both cytosolic and membrane proteins, thereby forming a key component of the elongasome. MreB filaments in cells are short and dynamic, moving around the long axis of rod-shaped cells, sensing curvature of the membrane and being implicated in peptidoglycan synthesis.


Asunto(s)
Actinas/metabolismo , Bacterias/citología , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Magnetosomas/metabolismo , Peptidoglicano/biosíntesis
12.
Elife ; 52016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27852434

RESUMEN

The similarity of eukaryotic actin to crenactin, a filament-forming protein from the crenarchaeon Pyrobaculum calidifontis supports the theory of a common origin of Crenarchaea and Eukaryotes. Monomeric structures of crenactin and actin are similar, although their filament architectures were suggested to be different. Here we report that crenactin forms bona fide double helical filaments that show exceptional similarity to eukaryotic F-actin. With cryo-electron microscopy and helical reconstruction we solved the structure of the crenactin filament to 3.8 Å resolution. When forming double filaments, the 'hydrophobic plug' loop in crenactin rearranges. Arcadin-2, also encoded by the arcade gene cluster, binds tightly with its C-terminus to the hydrophobic groove of crenactin. Binding is reminiscent of eukaryotic actin modulators such as cofilin and thymosin ß4 and arcadin-2 is a depolymeriser of crenactin filaments. Our work further supports the theory of shared ancestry of Eukaryotes and Crenarchaea.


Asunto(s)
Citoesqueleto de Actina/química , Factores Despolimerizantes de la Actina/química , Actinas/química , Proteínas Bacterianas/genética , Proteínas de Microfilamentos/genética , Citoesqueleto de Actina/ultraestructura , Factores Despolimerizantes de la Actina/ultraestructura , Actinas/ultraestructura , Microscopía por Crioelectrón , Citoesqueleto/química , Citoesqueleto/ultraestructura , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/ultraestructura , Conformación Proteica , Estructura Secundaria de Proteína , Pyrobaculum/química
13.
Elife ; 3: e02634, 2014 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-24843005

RESUMEN

Filaments of all actin-like proteins known to date are assembled from pairs of protofilaments that are arranged in a parallel fashion, generating polarity. In this study, we show that the prokaryotic actin homologue MreB forms pairs of protofilaments that adopt an antiparallel arrangement in vitro and in vivo. We provide an atomic view of antiparallel protofilaments of Caulobacter MreB as apparent from crystal structures. We show that a protofilament doublet is essential for MreB's function in cell shape maintenance and demonstrate by in vivo site-specific cross-linking the antiparallel orientation of MreB protofilaments in E. coli. 3D cryo-EM shows that pairs of protofilaments of Caulobacter MreB tightly bind to membranes. Crystal structures of different nucleotide and polymerisation states of Caulobacter MreB reveal conserved conformational changes accompanying antiparallel filament formation. Finally, the antimicrobial agents A22/MP265 are shown to bind close to the bound nucleotide of MreB, presumably preventing nucleotide hydrolysis and destabilising double protofilaments.DOI: http://dx.doi.org/10.7554/eLife.02634.001.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas Bacterianas/metabolismo , Caulobacter crescentus/metabolismo , Thermotoga maritima/metabolismo , Citoesqueleto de Actina/ultraestructura , Actinas/química , Proteínas Bacterianas/química , Reactivos de Enlaces Cruzados/metabolismo , Cristalografía por Rayos X , Cisteína/metabolismo , Escherichia coli/citología , Humanos , Lípidos/química , Modelos Moleculares , Mutación/genética , Nanotubos/química , Nanotubos/ultraestructura , Nucleótidos/metabolismo , Polimerizacion , Unión Proteica
14.
FEBS Lett ; 588(5): 776-82, 2014 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-24486010

RESUMEN

Polymerising proteins of the actin family are nearly ubiquitous. Crenactins, restricted to Crenarchaea, are more closely related to actin than bacterial MreB. Crenactins occur in gene clusters hinting at an unknown, but conserved function. We solved the crystal structure of crenactin at 3.2 Å resolution. The protein crystallises as a continuous right-handed helix with 8 subunits per complete turn, spanning 419 Å. The structure of crenactin shows several loops that are longer than in actin, but overall, crenactin is closely related to eukaryotic actin, with an RMSD of 1.6 Å. Crenactin filaments imaged by electron microscopy showed polymers with very similar helical parameters.


Asunto(s)
Actinas/química , Proteínas Arqueales/química , Pyrobaculum , Actinas/ultraestructura , Proteínas Arqueales/ultraestructura , Cristalografía por Rayos X , Modelos Moleculares , Polimerizacion , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología Estructural de Proteína
15.
J Mol Biol ; 425(12): 2164-73, 2013 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-23528827

RESUMEN

Pseudomonas ΦKZ-like bacteriophages encode a group of related tubulin/FtsZ-like proteins believed to be essential for the correct centring of replicated bacteriophage virions within the bacterial host. In this study, we present crystal structures of the tubulin/FtsZ-like protein TubZ from Pseudomonas bacteriophage ΦKZ in both the monomeric and protofilament states, revealing that ΦKZ TubZ undergoes structural changes required to polymerise, forming a canonical tubulin/FtsZ-like protofilament. Combining our structures with previous work, we propose a polymerisation-depolymerisation cycle for the Pseudomonas bacteriophage subgroup of tubulin/FtsZ-like proteins. Electron cryo-microscopy of ΦKZ TubZ filaments polymerised in vitro implies a long-pitch helical arrangement for the constituent protofilaments. Intriguingly, this feature is shared by the other known subgroup of bacteriophage tubulin/FtsZ-like proteins from Clostridium species, which are thought to be involved in partitioning the genomes of bacteriophages adopting a pseudo-lysogenic life cycle.


Asunto(s)
Fagos Pseudomonas/química , Proteínas Virales/química , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Microscopía por Crioelectrón , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Multimerización de Proteína , Alineación de Secuencia
16.
Microb Drug Resist ; 18(3): 298-305, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22432706

RESUMEN

In Gram-negative bacteria, the bacterial cell wall biosynthetic mechanism requires the coordinated action of enzymes and structural proteins located in the cytoplasm, within the membrane, and in the periplasm of the cell. Its main component, peptidoglycan (PG), is essential for cell division and wall elongation. Penicillin-binding proteins (PBPs) catalyze the last steps of PG biosynthesis, namely the polymerization of glycan chains and the cross-linking of stem peptides, and can be either monofunctional or bifunctional. Their action is coordinated with that of other enzymes essential for cell-wall biosynthesis, such as lytic transglycosylases (LT). Here, we have studied SltB1, an LT from Pseudomonas aeruginosa, and identified that it forms a complex with PBP2, a monofunctional enzyme, which requires the presence of Ca(2+). In addition, we have solved the structure of SltB1 to a high resolution, and identified that it harbors an EF-hand like motif containing a Ca(2+) ion displaying bipyramidal coordination. These studies provide initial structural details that shed light on the interactions between the PG biosynthesis enzymes in P. aeruginosa.


Asunto(s)
Proteínas Bacterianas/química , Calcio/metabolismo , Glicosiltransferasas/química , Proteínas de Unión a las Penicilinas/química , Peptidoglicano/biosíntesis , Pseudomonas aeruginosa/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Pared Celular/química , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas de Unión a las Penicilinas/genética , Proteínas de Unión a las Penicilinas/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia
17.
J Mol Biol ; 413(1): 236-46, 2011 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-21839744

RESUMEN

Pseudomonas aeruginosa is an opportunistic human pathogen that employs a finely tuned type III secretion system (T3SS) to inject toxins directly into the cytoplasm of target cells. ExsB is a 15.6-kDa protein encoded in a T3SS transcription regulation operon that displays high sequence similarity to YscW, a lipoprotein from Yersinia spp. whose genetic neighborhood also involves a transcriptional regulator, and has been shown to play a role in the stabilization of the outer membrane ring of the T3SS. Here, we show that ExsB is expressed in P. aeruginosa upon induction of the T3SS, and subcellular fractionation studies reveal that it is associated with the outer membrane. The high-resolution crystal structure of ExsB shows that it displays a compact ß-sandwich fold with interdependent ß-sheets. ExsB possesses a large patch of basic residues that could play a role in membrane recognition, and its structure is distinct from that of MxiM, a lipoprotein involved in secretin stabilization in Shigella, as well as from those of Pil lipoproteins involved in pilus biogenesis. These results reveal that small lipoproteins involved in formation of the outer membrane secretin ring display clear structural differences that may be related to the different functions they play in these systems.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/aislamiento & purificación , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Lipoproteínas/química , Lipoproteínas/aislamiento & purificación , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/aislamiento & purificación , Pseudomonas aeruginosa/química , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Lipoproteínas/genética , Proteínas de Transporte de Membrana/genética , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Yersinia/genética
18.
Structure ; 19(5): 603-12, 2011 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-21565695

RESUMEN

The type III secretion system (T3SS) is employed by a number of Gram-negative bacterial pathogens to inject toxins into eukaryotic cells. The biogenesis of this complex machinery requires the regulated interaction between over 20 cytosolic, periplasmic, and membrane-imbedded proteins, many of which undergo processes such as polymerization, partner recognition, and partial unfolding. Elements of this intricate macromolecular system have been characterized through electron microscopy, crystallography, and NMR techniques, allowing for an initial understanding of the spatiotemporal regulation of T3SS-related events. Here, we report recent advances in the structural characterization of T3SS proteins from a number of bacteria, and provide an overview of recently identified small molecule T3SS inhibitors that could potentially be explored for novel antibacterial development.


Asunto(s)
Proteínas Bacterianas/química , Toxinas Bacterianas/metabolismo , Bacterias Gramnegativas/química , Bacterias Gramnegativas/metabolismo , Proteínas de la Membrana/química , Complejos Multiproteicos/química , Animales , Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Células Eucariotas/microbiología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/patogenicidad , Humanos , Espectroscopía de Resonancia Magnética , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Microscopía Electrónica , Modelos Moleculares , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/metabolismo , Plantas/microbiología , Polimerizacion/efectos de los fármacos
19.
FEBS J ; 278(3): 414-26, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21182592

RESUMEN

The type III secretion system (T3SS) is a complex macromolecular machinery employed by a number of Gram-negative species to initiate infection. Toxins secreted through the system are synthesized in the bacterial cytoplasm and utilize the T3SS to pass through both bacterial membranes and the periplasm, thus being introduced directly into the eukaryotic cytoplasm. A key element of the T3SS of all bacterial pathogens is the translocon, which comprises a pore that is inserted into the membrane of the target cell, allowing toxin injection. Three macromolecular partners associate to form the translocon: two are hydrophobic and one is hydrophilic, and the latter also associates with the T3SS needle. In this review, we discuss recent advances on the biochemical and structural characterization of the proteins involved in translocon formation, as well as their participation in the modification of intracellular signalling pathways upon infection. Models of translocon assembly and regulation are also discussed.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Transporte de Membrana/química , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Transporte Biológico , Citoplasma/metabolismo , Bacterias Gramnegativas/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de Transporte de Membrana/metabolismo , Datos de Secuencia Molecular , Alineación de Secuencia
20.
Structure ; 18(1): 106-15, 2010 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-20152157

RESUMEN

Pili are fibrous virulence factors associated directly to the bacterial surface that play critical roles in adhesion and recognition of host cell receptors. The human pathogen Streptococcus pneumoniae carries a single pilus-related adhesin (RrgA) that is key for infection establishment and provides protection from bacterial challenge in animal infection models, but details of these roles remain unclear. Here we report the high-resolution crystal structure of RrgA, a 893-residue elongated macromolecule whose fold contains four domains presenting both eukaryotic and prokaryotic origins. RrgA harbors an integrin I collagen-recognition domain decorated with two inserted "arms" that fold into a positively charged cradle, as well as three "stalk-forming" domains. We show by site-specific mutagenesis, mass spectrometry, and thermal shift assays that intradomain isopeptide bonds play key roles in stabilizing RrgA's stalk. The high sequence similarity between RrgA and its homologs in other Gram-positive microorganisms suggests common strategies for ECM recognition and immune evasion.


Asunto(s)
Adhesinas Bacterianas/química , Fimbrias Bacterianas/química , Streptococcus pneumoniae/química , Adhesinas Bacterianas/metabolismo , Secuencia de Aminoácidos , Secuencia Conservada , Cristalografía por Rayos X , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Fimbrias Bacterianas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia , Streptococcus pneumoniae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...