Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 43(24): 7764-73, 2004 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-15554641

RESUMEN

New lithium salts of weakly coordinating anions were prepared by treating lithium imidazolates or LiN(CH3)2 with 2 equiv of BF(3). They are LiIm(BF3)2, Li 2-MeIm(BF3)2, Li 4-MeIm(BF3)2, LiBenzIm(BF3)2, Li 2-iPrIm(BF3)2, and LiN(CH3)2(BF3)2 (Im=imidazolate, Me=methyl, iPr=isopropyl, BenzIm=benzoimidazolate). The salts were characterized by NMR spectroscopy and mass spectrometry. The structure of LiBenzIm(BF3)2 consists of a dimeric centrosymmetric unit with each lithium atom forming a bridge between the two anions through one fluorine contact to each anion. The structure of a hydrate of LiN(CH3)2(BF3)2 consists of an infinite chain in which each anion chelates two different lithium atoms through Li-F bonds. The conductivities of electrolyte solutions of these salts were measured and are discussed in terms of different ion-pairing modes determined from the solid-state structures, the anion's ability to distribute charge, and solution viscosity. Organic carbonate solutions of LiIm(BF3)2 partially disproportionate at 85 degrees C forming LiBF4, LiBF2[Im(BF3)]2, and Li[(BF3)ImBF2ImBF2Im(BF3)], reaching equilibrium by 3 months at 85 degrees C but not disproportionating at room temperature after 9 months. A mechanism for the formation of these disproportionation products is proposed. The lower conductivity of the 1 M LiIm(BF3)2 solution that has undergone disproportionation is attributed to the formation LiBF4, which is less conductive, and LiBF2[Im(BF3)]2 and Li[(BF3)ImBF2ImBF2Im(BF3)], which increase solution viscosity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA