Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Matrix Biol ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38788809

RESUMEN

Renal development is a complex process in which two major processes, tubular branching and nephron development, regulate each other reciprocally. Our previous findings have indicated that collagen XVIII (ColXVIII), an extracellular matrix protein, affects the renal branching morphogenesis. We investigate here the role of ColXVIII in nephron formation and the behavior of nephron progenitor cells (NPCs) using isoform-specific ColXVIII knockout mice. The results show that the short ColXVIII isoform predominates in the early epithelialized nephron structures whereas the two longer isoforms are expressed only in the later phases of glomerular formation. Meanwhile, electron microscopy showed that the ColXVIII mutant embryonic kidneys have ultrastructural defects at least from embryonic day 16.5 onwards. Similar structural defects had previously been observed in adult ColXVIII-deficient mice, indicating a congenital origin. The lack of ColXVIII led to a reduced NPC population in which changes in NPC proliferation and maintenance and in macrophage influx were perceived to play a role. The changes in NPC behavior in turn led to notably reduced overall nephron formation. In conclusion, the results show that ColXVIII has multiple roles in renal development, both in ureteric branching and in NPC behavior.

2.
Matrix Biol ; 125: 73-87, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38081527

RESUMEN

Collagen biosynthesis requires several co- and post-translational modifications of lysine and proline residues to form structurally and functionally competent collagen molecules. Formation of 4-hydroxyproline (4Hyp) in Y-position prolines of the repetitive -X-Y-Gly- sequences provides thermal stability for the triple-helical collagen molecules. 4Hyp formation is catalyzed by a collagen prolyl 4-hydroxylase (C-P4H) family consisting of three isoenzymes. Here we identify specific roles for the two main C-P4H isoenzymes in collagen hydroxylation by a detailed 4Hyp analysis of type I and IV collagens derived from cell and tissue samples. Loss of C-P4H-I results in underhydroxylation of collagen where the affected prolines are not uniformly distributed, but mainly present in sites where the adjacent X-position amino acid has a positively charged or a polar uncharged side chain. In contrast, loss of C-P4H-II results in underhydroxylation of triplets where the X-position is occupied by a negatively charged amino acid glutamate or aspartate. Hydroxylation of these triplets was found to be important as loss of C-P4H-II alone resulted in reduced collagen melting temperature and altered assembly of collagen fibrils and basement membrane. The observed C-P4H isoenzyme differences in substrate specificity were explained by selective binding of the substrate to the active site resulting in distinct differences in Km and Vmax values. Furthermore, our results clearly show that the substrate proline selection is not dependent on the collagen type, but the main determinant is the X-position amino acid of the -X-Pro-Gly- triplet. Although our data clearly shows the necessity of both C-P4H-I and II for normal prolyl 4-hydroxylation and function of collagens, the mRNA expression of the isoenzymes with various procollagens was, surprisingly, not tightly coordinated, suggesting additional levels of control. In conclusion, this study provides a molecular level explanation for the need of multiple C-P4H isoenzymes to generate collagen molecules capable to assemble into intact extracellular matrix structures.


Asunto(s)
Dipéptidos , Isoenzimas , Prolil Hidroxilasas , Prolil Hidroxilasas/genética , Isoenzimas/genética , Colágeno Tipo I/genética , Procolágeno-Prolina Dioxigenasa/genética , Procolágeno-Prolina Dioxigenasa/química , Procolágeno-Prolina Dioxigenasa/metabolismo , Colágeno/genética , Colágeno/metabolismo , Prolina/metabolismo
3.
Matrix Biol ; 125: 12-30, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37944712

RESUMEN

Extracellular matrix (ECM) tumorigenic alterations resulting in high matrix deposition and stiffening are hallmarks of adenocarcinomas and are collectively defined as desmoplasia. Here, we thoroughly analysed primary prostate cancer tissues obtained from numerous patients undergoing radical prostatectomy to highlight reproducible structural changes in the ECM leading to the loss of the glandular architecture. Starting from patient cells, we established prostate cancer tumoroids (PCTs) and demonstrated they require TGF-ß signalling pathway activity to preserve phenotypical and structural similarities with the tissue of origin. By modulating TGF-ß signalling pathway in PCTs, we unveiled its role in ECM accumulation and remodelling in prostate cancer. We also found that TGF-ß-induced ECM remodelling is responsible for the initiation of prostate cell epithelial-to-mesenchymal transition (EMT) and the acquisition of a migratory, invasive phenotype. Our findings highlight the cooperative role of TGF-ß signalling and ECM desmoplasia in prompting prostate cell EMT and promoting tumour progression and dissemination.


Asunto(s)
Neoplasias de la Próstata , Factor de Crecimiento Transformador beta , Masculino , Humanos , Factor de Crecimiento Transformador beta/metabolismo , Transición Epitelial-Mesenquimal , Neoplasias de la Próstata/patología , Matriz Extracelular/metabolismo , Próstata/metabolismo , Línea Celular Tumoral
4.
J Cell Sci ; 136(17)2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37555624

RESUMEN

The extracellular matrix (ECM) is a complex meshwork of proteins that forms the scaffold of all tissues in multicellular organisms. It plays crucial roles in all aspects of life - from orchestrating cell migration during development, to supporting tissue repair. It also plays critical roles in the etiology or progression of diseases. To study this compartment, we have previously defined the compendium of all genes encoding ECM and ECM-associated proteins for multiple organisms. We termed this compendium the 'matrisome' and further classified matrisome components into different structural or functional categories. This nomenclature is now largely adopted by the research community to annotate '-omics' datasets and has contributed to advance both fundamental and translational ECM research. Here, we report the development of Matrisome AnalyzeR, a suite of tools including a web-based application and an R package. The web application can be used by anyone interested in annotating, classifying and tabulating matrisome molecules in large datasets without requiring programming knowledge. The companion R package is available to more experienced users, interested in processing larger datasets or in additional data visualization options.


Asunto(s)
Proteínas de la Matriz Extracelular , Matriz Extracelular , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Movimiento Celular
5.
Front Immunol ; 14: 1154528, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37539058

RESUMEN

The desmoplastic reaction observed in many cancers is a hallmark of disease progression and prognosis, particularly in breast and pancreatic cancer. Stromal-derived extracellular matrix (ECM) is significantly altered in desmoplasia, and as such plays a critical role in driving cancer progression. Using fibroblast-derived matrices (FDMs), we show that cancer cells have increased growth on cancer associated FDMs, when compared to FDMs derived from non-malignant tissue (normal) fibroblasts. We assess the changes in ECM characteristics from normal to cancer-associated stroma at the primary tumor site. Compositional, structural, and mechanical analyses reveal significant differences, with an increase in abundance of core ECM proteins, coupled with an increase in stiffness and density in cancer-associated FDMs. From compositional changes of FDM, we derived a 36-ECM protein signature, which we show matches in large part with the changes in pancreatic ductal adenocarcinoma (PDAC) tumor and metastases progression. Additionally, this signature also matches at the transcriptomic level in multiple cancer types in patients, prognostic of their survival. Together, our results show relevance of FDMs for cancer modelling and identification of desmoplastic ECM components for further mechanistic studies.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Pronóstico , Neoplasias Pancreáticas/patología , Fibroblastos/metabolismo , Carcinoma Ductal Pancreático/patología , Proteínas de la Matriz Extracelular , Neoplasias Pancreáticas
6.
J Clin Invest ; 133(18)2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37498672

RESUMEN

The tumor extracellular matrix (ECM) critically regulates cancer progression and treatment response. Expression of the basement membrane component collagen XVIII (ColXVIII) is induced in solid tumors, but its involvement in tumorigenesis has remained elusive. We show here that ColXVIII was markedly upregulated in human breast cancer (BC) and was closely associated with a poor prognosis in high-grade BCs. We discovered a role for ColXVIII as a modulator of epidermal growth factor receptor tyrosine kinase (ErbB) signaling and show that it forms a complex with ErbB1 and -2 (also known as EGFR and human epidermal growth factor receptor 2 [HER2]) and α6-integrin to promote cancer cell proliferation in a pathway involving its N-terminal portion and the MAPK/ERK1/2 and PI3K/AKT cascades. Studies using Col18a1 mouse models crossed with the mouse mammary tumor virus-polyoma virus middle T antigen (MMTV-PyMT) mammary carcinogenesis model showed that ColXVIII promoted BC growth and metastasis in a tumor cell-autonomous manner. Moreover, the number of mammary cancer stem cells was significantly reduced in the MMTV-PyMT and human cell models upon ColXVIII inhibition. Finally, ablation of ColXVIII substantially improved the efficacy of ErbB-targeting therapies in both preclinical models. In summary, ColXVIII was found to sustain the stemness properties of BC cells and tumor progression and metastasis through ErbB signaling, suggesting that targeting ColXVIII in the tumor milieu may have important therapeutic potential.


Asunto(s)
Neoplasias de la Mama , Colágeno Tipo XVIII , Ratones , Animales , Humanos , Femenino , Colágeno Tipo XVIII/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Receptor ErbB-2/metabolismo , Transformación Celular Neoplásica , Transducción de Señal
7.
bioRxiv ; 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37131773

RESUMEN

The extracellular matrix (ECM) is a complex meshwork of proteins that forms the scaffold of all tissues in multicellular organisms. It plays critical roles in all aspects of life: from orchestrating cell migration during development, to supporting tissue repair. It also plays critical roles in the etiology or progression of diseases. To study this compartment, we defined the compendium of all genes encoding ECM and ECM-associated proteins for multiple organisms. We termed this compendium the "matrisome" and further classified matrisome components into different structural or functional categories. This nomenclature is now largely adopted by the research community to annotate -omics datasets and has contributed to advance both fundamental and translational ECM research. Here, we report the development of Matrisome AnalyzeR, a suite of tools including a web-based application ( https://sites.google.com/uic.edu/matrisome/tools/matrisome-analyzer ) and an R package ( https://github.com/Matrisome/MatrisomeAnalyzeR ). The web application can be used by anyone interested in annotating, classifying, and tabulating matrisome molecules in large datasets without requiring programming knowledge. The companion R package is available to more experienced users, interested in processing larger datasets or in additional data visualization options. SUMMARY STATEMENT: Matrisome AnalyzeR is a suite of tools, including a web-based app and an R package, designed to facilitate the annotation and quantification of extracellular matrix components in big datasets.

8.
Invest Ophthalmol Vis Sci ; 63(11): 1, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36190459

RESUMEN

Purpose: Defects in the iridocorneal angle tissues, including the trabecular meshwork (TM) and Schlemm's canal (SC), impair aqueous humor flow and increase the intraocular pressure (IOP), eventually resulting in glaucoma. Activation of endothelial tyrosine kinase receptor Tie2 by angiopoietin-1 (Angpt1) has been demonstrated to be essential for SC formation, but roles of the other two Tie2 ligands, Angpt2 and Angpt4, have been controversial or not yet characterized, respectively. Methods: Angpt4 expression was investigated using genetic cell fate mapping and reporter mice. Congenital deletion of Angpt2 and Angpt4 and tamoxifen-inducible deletion of Angpt1 in mice were used to study the effects of Angpt4 deletion alone and in combination with the other angiopoietins. SC morphology was examined with immunofluorescent staining. IOP measurements, electron microscopy, and histologic evaluation were used to study glaucomatous changes. Results: Angpt4 was postnatally expressed in the TM. While Angpt4 deletion alone did not affect SC and Angpt4 deletion did not aggravate Angpt1 deletion phenotype, absence of Angpt4 combined with Angpt2 deletion had detrimental effects on SC morphology in adult mice. Consequently, Angpt2-/-;Angpt4-/- mice displayed glaucomatous changes in the eye. Mice with Angpt2 deletion alone showed only moderate SC defects, but Angpt2 was necessary for proper limbal vasculature development. Mechanistically, analysis of Tie2 phosphorylation suggested that Angpt2 and Angpt4 cooperate as agonistic Tie2 ligands in maintaining SC integrity. Conclusions: Our results indicated an additive effect of Angpt4 in SC maintenance and Tie2 activation and a spatiotemporally regulated interplay between the angiopoietins in the mouse iridocorneal angle.


Asunto(s)
Angiopoyetina 2 , Angiopoyetinas , Glaucoma , Angiopoyetina 1/genética , Angiopoyetina 1/metabolismo , Angiopoyetina 2/genética , Angiopoyetina 2/metabolismo , Angiopoyetinas/genética , Animales , Humor Acuoso/metabolismo , Glaucoma/patología , Presión Intraocular , Ratones , Tamoxifeno , Malla Trabecular/metabolismo
9.
J Cell Sci ; 135(18)2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36102918

RESUMEN

The roles of the extracellular matrix molecule tenascin-C (TNC) in health and disease have been extensively reviewed since its discovery over 40 years ago. Here, we will describe recent insights into the roles of TNC in tumorigenesis, angiogenesis, immunity and metastasis. In addition to high levels of expression in tumors, and during chronic inflammation, and bacterial and viral infection, TNC is also expressed in lymphoid organs. This supports potential roles for TNC in immunity control. Advances using murine models with engineered TNC levels were instrumental in the discovery of important functions of TNC as a danger-associated molecular pattern (DAMP) molecule in tissue repair and revealed multiple TNC actions in tumor progression. TNC acts through distinct mechanisms on many different cell types with immune cells coming into focus as important targets of TNC in cancer. We will describe how this knowledge could be exploited for cancer disease management, in particular for immune (checkpoint) therapies.


Asunto(s)
Neoplasias , Tenascina , Animales , Carcinogénesis/genética , Carcinogénesis/metabolismo , Matriz Extracelular/metabolismo , Ratones , Neoplasias/genética , Neoplasias/metabolismo , Tenascina/genética , Tenascina/metabolismo
10.
Front Oncol ; 12: 981009, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36003785

RESUMEN

Integrin α11ß1 is a collagen-binding integrin that is needed to induce and maintain the myofibroblast phenotype in fibrotic tissues and during wound healing. The expression of the α11 is upregulated in cancer-associated fibroblasts (CAFs) in various human neoplasms. We investigated α11 expression in human cutaneous squamous cell carcinoma (cSCC) and in benign and premalignant human skin lesions and monitored its effects on cSCC development by subjecting α11-knockout (Itga11-/- ) mice to the DMBA/TPA skin carcinogenesis protocol. α11-deficient mice showed significantly decreased tumor cell proliferation, leading to delayed tumor development and reduced tumor burden. Integrin α11 expression was significantly upregulated in the desmoplastic tumor stroma of human and mouse cSCCs, and the highest α11 expression was detected in high-grade tumors. Our results point to a reduced ability of α11-deficient stromal cells to differentiate into matrix-producing and tumor-promoting CAFs and suggest that this is one causative mechanism underlying the observed decreased tumor growth. An unexpected finding in our study was that, despite reduced CAF activation, the α11-deficient skin tumors were characterized by the presence of thick and regularly aligned collagen bundles. This finding was attributed to a higher expression of TGFß1 and collagen crosslinking lysyl oxidases in the Itga11-/- tumor stroma. In summary, our data suggest that α11ß1 operates in a complex interactive tumor environment to regulate ECM synthesis and collagen organization and thus foster cSCC growth. Further studies with advanced experimental models are still needed to define the exact roles and molecular mechanisms of stromal α11ß1 in skin tumorigenesis.

11.
JBMR Plus ; 6(6): e10630, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35720665

RESUMEN

Proper deposition of the extracellular matrix and its major components, the collagens, is essential for endochondral ossification and bone mass accrual. Collagen prolyl 4-hydroxylases (C-P4Hs) hydroxylate proline residues in the -X-Pro-Gly- repeats of all known collagen types. Their product, 4-hydroxyproline, is essential for correct folding and thermal stability of the triple-helical collagen molecules in physiological body temperatures. We have previously shown that inactivation of the mouse P4ha1 gene, which codes for the catalytic α subunit of the major C-P4H isoform, is embryonic lethal, whereas inactivation of the P4ha2 gene produced only a minor phenotype. Instead, mice with a haploinsufficiency of the P4ha1 gene combined with a homozygous deletion of the P4ha2 gene present with a moderate chondrodysplasia due to transient cell death of the growth plate chondrocytes. Here, to further characterize the bone phenotype of the P4ha1 +/-; P4ha2 -/- mice, we have carried out gene expression analyses at whole-tissue and single-cell levels, biochemical analyses, microcomputed tomography, histomorphometric analyses, and second harmonic generation microscopy to show that C-P4H α subunit expression peaks early and that the C-P4H deficiency leads to reduced collagen amount, a reduced rate of bone formation, and a loss of trabecular and cortical bone volume in the long bones. The total osteoblast number in the proximal P4ha1 +/-; P4ha2 -/- tibia and the C-P4H activity in primary P4ha1 +/-; P4ha2 -/- osteoblasts were reduced, whereas the population of osteoprogenitor colony-forming unit fibroblasts was increased in the P4ha1 +/-; P4ha2 -/- marrow. Thus, the P4ha1 +/-; P4ha2 -/- mouse model recapitulates key aspects of a recently recognized congenital connective tissue disorder with short stature and bone dysplasia caused by biallelic variants of the human P4HA1 gene. Altogether, the data demonstrate the allele dose-dependent importance of the C-P4Hs to the developing organism and a threshold effect of C-P4H activity in the proper production of bone matrix. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

12.
Matrix Biol ; 111: 26-52, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35537652

RESUMEN

The extracellular matrix (ECM) is a fundamental component of the tissue of multicellular organisms that is comprised of an intricate network of multidomain proteins and associated factors, collectively known as the matrisome. The ECM creates a biophysical environment that regulates essential cellular processes such as adhesion, proliferation and migration and impacts cell fate decisions. The composition of the ECM varies across organs, developmental stages and diseases. Interestingly, most ECM genes generate transcripts that undergo extensive alternative splicing events, producing multiple protein variants from one gene thus enhancing ECM complexity and impacting matrix architecture. Extensive studies over the past several decades have linked ECM remodeling and expression of alternatively spliced ECM isoforms to cancer, and reprogramming of the alternative splicing patterns in cells has recently been proposed as a new hallmark of tumor progression. Indeed, tumor-associated alternative splicing occurs in both malignant and non-malignant cells of the tumor environment and growing evidence suggests that expression of specific ECM splicing variants could be a key step for stromal activation. In this review, we present a general overview of alternative splicing mechanisms, featuring examples of ECM components. The importance of ECM variant expression during essential physiological processes, such as tissue organization and embryonic development is discussed as well as the dysregulation of alternative splicing in cancer. The overall aim of this review is to address the complexity of the ECM by highlighting the importance of the yet-to-be-fully-characterized "alternative" matrisome in physiological and pathological states such as cancer.


Asunto(s)
Proteínas de la Matriz Extracelular , Neoplasias , Empalme Alternativo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Homeostasis/genética , Humanos , Neoplasias/genética , Neoplasias/metabolismo
13.
Matrix Biol ; 110: 141-150, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35569692

RESUMEN

The extracellular matrix (ECM) is a three-dimensional network of proteins of diverse nature, whose interactions are essential to provide tissues with the correct mechanical and biochemical cues they need for proper development and homeostasis. Changes in the quantity of extracellular matrix (ECM) components and their balance within the tumor microenvironment (TME) accompany and fuel all steps of tumor development, growth and metastasis, and a deeper and more systematic understanding of these processes is fundamental for the development of future therapeutic approaches. The wealth of "big data" from numerous sources has enabled gigantic steps forward in the comprehension of the oncogenic process, also impacting on our understanding of ECM changes in the TME. Most of the available studies, however, have not considered the network nature of ECM and the possibility that changes in the quantity of components might be regulated (co-occur) in cancer and significantly "rebound" on the whole network through its connections, fundamentally altering the matrix interactome. To facilitate the exploration of these network-scale effects we have implemented MatriNet (www.matrinet.org), a database enabling the study of structural changes in ECM network architectures as a function of their protein-protein interaction strengths across 20 different tumor types. The use of MatriNet is intuitive and offers new insights into tumor-specific as well as pan-cancer features of ECM networks, facilitating the identification of similarities and differences between cancers as well as the visualization of single-tumor events and the prioritization of ECM targets for further experimental investigations.


Asunto(s)
Matriz Extracelular , Neoplasias , Carcinogénesis/metabolismo , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Neoplasias/metabolismo , Microambiente Tumoral
14.
Neurocase ; 28(1): 11-18, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35253627

RESUMEN

. COL18A1 gene mutations have been associated with Knobloch syndrome, which is characterized by ocular and brain abnormalities. Here we report a 4.5 years-old male child with autism and two novel COL18A1 mutations (NM_030582.4: c.1883_1891dup and c.1787C>T). Hypermetropic astigmatism, but not brain migration disorders, was observed. However, an asymmetric pattern of cerebellar perfusion and a smaller arcuate fascicle were found.  Low levels of collagen XVIII were also observed in the patient´s serum. Thus, biallelic loss-of-function mutations in COL18A1 may be a new cause of autism  without the brain malformations typically reported in patients with Knobloch syndrome.


Asunto(s)
Colágeno Tipo XVIII , Endostatinas , Cerebelo , Preescolar , Colágeno Tipo XVIII/genética , Encefalocele , Endostatinas/genética , Humanos , Masculino , Mutación , Neuroimagen , Degeneración Retiniana , Desprendimiento de Retina/congénito
16.
J Am Soc Nephrol ; 32(9): 2273-2290, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34400539

RESUMEN

BACKGROUND: The reported prevalence of Alport syndrome varies from one in 5000 to one in 53,000 individuals. This study estimated the frequencies of predicted pathogenic COL4A3-COL4A5 variants in sequencing databases of populations without known kidney disease. METHODS: Predicted pathogenic variants were identified using filtering steps based on the ACMG/AMP criteria, which considered collagen IV α3-α5 position 1 Gly to be critical domains. The population frequencies of predicted pathogenic COL4A3-COL4A5 variants were then determined per mean number of sequenced alleles. Population frequencies for compound heterozygous and digenic combinations were calculated from the results for heterozygous variants. RESULTS: COL4A3-COL4A5 variants resulting in position 1 Gly substitutions were confirmed to be associated with hematuria (for each, P<0.001). Predicted pathogenic COL4A5 variants were found in at least one in 2320 individuals. p.(Gly624Asp) represented nearly half (16 of 33, 48%) of the variants in Europeans. Most COL4A5 variants (54 of 59, 92%) had a biochemical feature that potentially mitigated the clinical effect. The predicted pathogenic heterozygous COL4A3 and COL4A4 variants affected one in 106 of the population, consistent with the finding of thin basement membrane nephropathy in normal donor kidney biopsy specimens. Predicted pathogenic compound heterozygous variants occurred in one in 88,866 individuals, and digenic variants in at least one in 44,793. CONCLUSIONS: The population frequencies for Alport syndrome are suggested by the frequencies of predicted pathogenic COL4A3-COL4A5 variants, but must be adjusted for the disease penetrance of individual variants and for the likelihood of already diagnosed disease and non-Gly substitutions. Disease penetrance may depend on other genetic and environmental factors.


Asunto(s)
Autoantígenos/genética , Colágeno Tipo IV/genética , Mutación/genética , Nefritis Hereditaria/epidemiología , Nefritis Hereditaria/genética , Bases de Datos Genéticas , Femenino , Humanos , Masculino , Nefritis Hereditaria/diagnóstico , Penetrancia , Prevalencia
17.
iScience ; 24(5): 102464, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34013174

RESUMEN

Osteoarthritis (OA) is the most prevalent chronic joint disease that affects a large proportion of the elderly population. Chondrogenic progenitor cells (CPCs) reside in late-stage OA cartilage tissue, producing a fibrocartilaginous extracellular matrix; these cells can be manipulated in vitro to deposit proteins of healthy articular cartilage. CPCs are under the control of SOX9 and RUNX2. In our earlier studies, we showed that a knockdown of RUNX2 enhanced the chondrogenic potential of CPCs. Here we demonstrate that CPCs carrying a knockout of RAB5C, a protein involved in endosomal trafficking, exhibited elevated expression of multiple chondrogenic markers, including the SOX trio, and increased COL2 deposition, whereas no changes in COL1 deposition were observed. We report RAB5C as an attractive target for future therapeutic approaches designed to increase the COL2 content in the diseased joint.

19.
Cancers (Basel) ; 13(5)2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33802493

RESUMEN

BACKGROUND: To evaluate the occurrence of mutations affecting post-translational modification (PTM) sites in matrisome genes across different tumor types, in light of their genomic and functional contexts and in comparison with the rest of the genome. METHODS: This study spans 9075 tumor samples and 32 tumor types from The Cancer Genome Atlas (TCGA) Pan-Cancer cohort and identifies 151,088 non-silent mutations in the coding regions of the matrisome, of which 1811 affecting known sites of hydroxylation, phosphorylation, N- and O-glycosylation, acetylation, ubiquitylation, sumoylation and methylation PTM. RESULTS: PTM-disruptive mutations (PTMmut) in the matrisome are less frequent than in the rest of the genome, seem independent of cell-of-origin patterns but show dependence on the nature of the matrisome protein affected and the background PTM types it generally harbors. Also, matrisome PTMmut are often found among structural and functional protein regions and in proteins involved in homo- and heterotypic interactions, suggesting potential disruption of matrisome functions. CONCLUSIONS: Though quantitatively minoritarian in the spectrum of matrisome mutations, PTMmut show distinctive features and damaging potential which might concur to deregulated structural, functional, and signaling networks in the tumor microenvironment.

20.
Genomics ; 113(3): 1349-1365, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33713822

RESUMEN

Yes-associated protein 1 (YAP1) is a transcriptional co-activator downstream of Hippo pathway. The pathway exerts crucial roles in organogenesis and its dysregulation is associated with the spreading of different cancer types. YAP1 gene encodes for multiple protein isoforms, whose specific functions are not well defined. We demonstrate the splicing of isoform-specific mRNAs is controlled in a stage- and tissue-specific fashion. We designed expression vectors encoding for the most-represented isoforms of YAP1 with either one or two WW domains and studied their specific signaling activities in YAP1 knock-out cell lines. YAP1 isoforms display both common and unique functions and activate distinct transcriptional programs, as the result of their unique protein interactomes. By generating TEAD-based transcriptional reporter cell lines, we demonstrate individual YAP1 isoforms display unique effects on cell proliferation and differentiation. Finally, we illustrate the complexity of the regulation of Hippo-YAP1 effector in physiological and in pathological conditions of the heart.


Asunto(s)
Proteínas de Ciclo Celular , Isoformas de ARN , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Señalizadoras YAP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...