Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Faraday Discuss ; 194: 283-303, 2016 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-27711831

RESUMEN

The development of free electron laser (FEL) sources has provided an unprecedented bridge between the scientific communities working with ultrafast lasers and extreme ultraviolet (XUV) and X-ray radiation. Indeed, in recent years an increasing number of FEL-based applications have exploited methods and concepts typical of advanced optical approaches. In this context, we recently used a seeded FEL to demonstrate a four-wave-mixing (FWM) process stimulated by coherent XUV radiation, namely the XUV transient grating (X-TG). We hereby report on X-TG measurements carried out on a sample of silicon nitride (Si3N4). The recorded data bears evidence for two distinct signal decay mechanisms: one occurring on a sub-ps timescale and one following slower dynamics extending throughout and beyond the probed timescale range (100 ps). The latter is compatible with a slower relaxation (time decay > ns), that may be interpreted as the signature of thermal diffusion modes. From the peak intensity of the X-TG signal we could estimate a value of the effective third-order susceptibility which is substantially larger than that found in SiO2, so far the only sample with available X-TG data. Furthermore, the intensity of the time-coincidence peak shows a linear dependence on the intensity of the three input beams, indicating that the measurements were performed in the weak field regime. However, the timescale of the ultrafast relaxation exhibits a dependence on the intensity of the XUV radiation. We interpreted the observed behaviour as the generation of a population grating of free-electrons and holes that, on the sub-ps timescale, relaxes to generate lattice excitations. The background free detection inherent to the X-TG approach allowed the determination of FEL-induced electron dynamics with a sensitivity largely exceeding that of transient reflectivity and transmissivity measurements, usually employed for this purpose.

2.
J Chem Phys ; 133(12): 124514, 2010 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-20886957

RESUMEN

The high frequency dynamics of liquid iodine has been investigated by deep inelastic x-ray scattering at exchanged wave-vectors (q) ranging from 2.5 to 15 Å(-1). The experimental data have been analyzed in the frame of the Sachs-Teller theory of the molecular spectrum while accounting for final state corrections to the lineshape. The performed data analysis carries insights on physical quantities as relevant as the mean rototranslational kinetic energy and the mean square Laplacian of the intermolecular potential. In both cases the measured values are consistent with corresponding theoretical expectations.

3.
J Chem Phys ; 131(14): 144502, 2009 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-19831447

RESUMEN

The density and temperature dependence of the structural relaxation time (tau) in water was determined by inelastic ultraviolet scattering spectroscopy in the thermodynamic range (P=1-4000 bars, T=253-323 K), where several water anomalies take place. We observed an activation (Arrhenius) temperature dependence of tau at constant density and a monotonic density decrease at constant temperature. The latter trend was accounted for by introducing a density-dependent activation entropy associated to water local structure. The combined temperature and density behavior of tau indicates that differently from previous results, in the probed thermodynamic range, the relaxation process is ruled by a density-dependent activation Helmholtz free energy rather than a simple activation energy. Finally, the extrapolation of the observed phenomenology at lower temperature suggests a substantial agreement with the liquid-liquid phase transition hypothesis.


Asunto(s)
Elasticidad , Dispersión de Radiación , Temperatura , Rayos Ultravioleta , Agua/química , Espectrofotometría Ultravioleta , Termodinámica , Factores de Tiempo , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...