Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cancer Res Commun ; 4(8): 2189-2202, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39056192

RESUMEN

Type I interferons (IFN) are immune-stimulatory cytokines involved in antiviral and antitumor immune responses. They enhance the efficacy of immunogenic anticancer therapies such as radiotherapy by activating both innate and adaptive immune cells. Macrophages are one of the most abundant innate immune cells in the immune microenvironment of melanoma brain metastases (MBM) and can exert potent immune-suppressive functions. Here, we investigate the potential of tumoral type I IFNs to repolarize tumor-associated macrophages (TAM) in two murine MBM models and assess the effects of radiotherapy-induced type I IFN on TAMs in a transcriptomic MBM patient dataset. In mice, we describe a proinflammatory M1-like TAM phenotype induced by tumoral IFNß and identify a myeloid type I IFN-response signature associated with a high M1/M2-like TAM ratio. Following irradiation, patients with MBM displaying a myeloid type I IFN-response signature showed increased overall survival, providing evidence that tumoral IFNß supports an effective antitumor immune response by re-educating immune-regulatory TAM. These findings uncover type I IFN-inducing therapies as a potential macrophage-targeting therapeutic approach and provide a rationale for combining radiotherapy with concomitant immunotherapy to improve treatment response in patients with MBM. SIGNIFICANCE: Our study shows that re-education of tumor-associated macrophages by tumoral IFNß translates into improved clinical outcome in patients with melanoma brain metastases, providing pathomechanistic insights into synergistic type I interferon-inducing therapies with immunotherapies and warranting investigation of IFNß as a predictive biomarker for combined radioimmunotherapy.


Asunto(s)
Neoplasias Encefálicas , Interferón beta , Melanoma , Macrófagos Asociados a Tumores , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/inmunología , Animales , Ratones , Humanos , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/efectos de los fármacos , Melanoma/inmunología , Melanoma/patología , Melanoma/tratamiento farmacológico , Melanoma/secundario , Fenotipo , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de los fármacos , Ratones Endogámicos C57BL , Femenino , Línea Celular Tumoral
2.
Sci Immunol ; 9(95): eadj7970, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38701193

RESUMEN

Understanding the mechanisms that regulate T cell immunity is critical for the development of effective therapies for diseases associated with T cell dysfunction, including autoimmune diseases, chronic infections, and cancer. Co-inhibitory "checkpoint molecules," such as programmed cell death protein-1, balance excessive or prolonged immune activation by T cell-intrinsic signaling. Here, by screening for mediators of natural killer (NK) cell recognition on T cells, we identified the immunoglobulin superfamily ligand B7H6 to be highly expressed by activated T cells, including patient-infused CD19-targeting chimeric antigen receptor (CAR) T cells. Unlike other checkpoint molecules, B7H6 mediated NKp30-dependent recognition and subsequent cytolysis of activated T cells by NK cells. B7H6+ T cells were prevalent in the tissue and blood of several diseases, and their abundance in tumor tissue positively correlated with clinical response in a cohort of patients with immune checkpoint inhibitor-treated esophageal cancer. In humanized mouse models, NK cell surveillance via B7H6 limited the persistence and antitumor activity of CAR T cells, and its genetic deletion enhanced T cell proliferation and persistence. Together, we provide evidence of B7H6 protein expression by activated T cells and suggest the B7H6-NKp30 axis as a therapeutically actionable NK cell-dependent immune checkpoint that regulates human T cell function.


Asunto(s)
Antígenos B7 , Células Asesinas Naturales , Linfocitos T , Humanos , Células Asesinas Naturales/inmunología , Animales , Ratones , Antígenos B7/inmunología , Linfocitos T/inmunología , Receptor 3 Gatillante de la Citotoxidad Natural/inmunología , Activación de Linfocitos/inmunología , Femenino , Neoplasias Esofágicas/inmunología
3.
Sci Adv ; 10(5): eadi9091, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38306431

RESUMEN

H3K27M, a driver mutation with T and B cell neoepitope characteristics, defines an aggressive subtype of diffuse glioma with poor survival. We functionally dissect the immune response of one patient treated with an H3K27M peptide vaccine who subsequently entered complete remission. The vaccine robustly expanded class II human leukocyte antigen (HLA)-restricted peripheral H3K27M-specific T cells. Using functional assays, we characterized 34 clonally unique H3K27M-reactive T cell receptors and identified critical, conserved motifs in their complementarity-determining region 3 regions. Using detailed HLA mapping, we further demonstrate that diverse HLA-DQ and HLA-DR alleles present immunogenic H3K27M epitopes. Furthermore, we identified and profiled H3K27M-reactive B cell receptors from activated B cells in the cerebrospinal fluid. Our results uncover the breadth of the adaptive immune response against a shared clonal neoantigen across multiple HLA allelotypes and support the use of class II-restricted peptide vaccines to stimulate tumor-specific T and B cells harboring receptors with therapeutic potential.


Asunto(s)
Glioma , Linfocitos T , Humanos , Antígenos HLA-DR , Vacunación , Glioma/genética , Epítopos
4.
Neuro Oncol ; 26(2): 266-278, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-37715782

RESUMEN

BACKGROUND: Neuroligin 4 X-linked (NLGN4X) harbors a human leukocyte antigen (HLA)-A*02-restricted tumor-associated antigen, overexpressed in human gliomas, that was found to induce specific cytotoxic T cell responses following multi-peptide vaccination in patients with newly diagnosed glioblastoma. METHODS: T cell receptor (TCR) discovery was performed using droplet-based single-cell TCR sequencing of NLGN4X-tetramer-sorted T cells postvaccination. The identified TCR was delivered to Jurkat T cells and primary human T cells (NLGN4X-TCR-T). Functional profiling of NLGN4X-TCR-T was performed by flow cytometry and cytotoxicity assays. Therapeutic efficacy of intracerebroventricular NLGN4X-TCR-T was assessed in NOD scid gamma (NSG) major histocompatibility complex (MHC) I/II knockout (KO) (NSG MHC I/II KO) mice bearing NLGN4X-expressing experimental gliomas. RESULTS: An HLA-A*02-restricted vaccine-induced T cell receptor specifically binding NLGN4X131-139 was applied for preclinical therapeutic use. Reactivity, cytotoxicity, and polyfunctionality of this NLGN4X-specific TCR are demonstrated in various cellular models. Intracerebroventricular administration of NLGN4X-TCR-T prolongs survival and leads to an objective response rate of 44.4% in experimental glioma-bearing NSG MHC I/II KO mice compared to 0.0% in control groups. CONCLUSION: NLGN4X-TCR-T demonstrate efficacy in a preclinical glioblastoma model. On a global scale, we provide the first evidence for the therapeutic retrieval of vaccine-induced human TCRs for the off-the-shelf treatment of glioblastoma patients.Keywords cell therapy | glioblastoma | T cell receptor | tumor antigen.


Asunto(s)
Vacunas contra el Cáncer , Glioblastoma , Ratones , Animales , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Vacunas contra el Cáncer/uso terapéutico , Vacunas de Subunidad , Receptores de Antígenos de Linfocitos T , Linfocitos T , Antígenos de Neoplasias/genética , Moléculas de Adhesión Celular Neuronal
5.
Theranostics ; 13(15): 5170-5182, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37908732

RESUMEN

Rationale: Intrinsic brain tumors, such as gliomas are largely resistant to immunotherapies including immune checkpoint blockade. Adoptive cell therapies (ACT) including chimeric antigen receptor (CAR) or T cell receptor (TCR)-transgenic T cell therapy targeting glioma-associated antigens are an emerging field in glioma immunotherapy. However, imaging techniques for non-invasive monitoring of adoptively transferred T cells homing to the glioma microenvironment are currently lacking. Methods: Ultrasmall iron oxide nanoparticles (NP) can be visualized non-invasively by magnetic resonance imaging (MRI) and dedicated MRI sequences such as T2* mapping. Here, we develop a protocol for efficient ex vivo labeling of murine and human TCR-transgenic and CAR T cells with iron oxide NPs. We assess labeling efficiency and T cell functionality by flow cytometry and transmission electron microscopy (TEM). NP labeled T cells are visualized by MRI at 9.4 T in vivo after adoptive T cell transfer and correlated with 3D models of cleared brains obtained by light sheet microscopy (LSM). Results: NP are incorporated into T cells in subcellular cytoplasmic vesicles with high labeling efficiency without interfering with T cell viability, proliferation and effector function as assessed by cytokine secretion and antigen-specific killing assays in vitro. We further demonstrate that adoptively transferred T cells can be longitudinally monitored intratumorally by high field MRI at 9.4 Tesla in a murine glioma model with high sensitivity. We find that T cell influx and homogenous spatial distribution of T cells within the TME as assessed by T2* imaging predicts tumor response to ACT whereas incomplete T cell coverage results in treatment resistance. Conclusion: This study showcases a rational for monitoring adoptive T cell therapies non-invasively by iron oxide NP in gliomas to track intratumoral T cell influx and ultimately predict treatment outcome.


Asunto(s)
Glioma , Linfocitos T , Humanos , Animales , Ratones , Glioma/diagnóstico por imagen , Glioma/terapia , Inmunoterapia Adoptiva , Receptores de Antígenos de Linfocitos T , Tratamiento Basado en Trasplante de Células y Tejidos , Microambiente Tumoral
6.
Nat Med ; 29(10): 2586-2592, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37735561

RESUMEN

Substitution of lysine 27 to methionine in histone H3 (H3K27M) defines an aggressive subtype of diffuse glioma. Previous studies have shown that a H3K27M-specific long peptide vaccine (H3K27M-vac) induces mutation-specific immune responses that control H3K27M+ tumors in major histocompatibility complex-humanized mice. Here we describe a first-in-human treatment with H3K27M-vac of eight adult patients with progressive H3K27M+ diffuse midline glioma on a compassionate use basis. Five patients received H3K27M-vac combined with anti-PD-1 treatment based on physician's discretion. Repeat vaccinations with H3K27M-vac were safe and induced CD4+ T cell-dominated, mutation-specific immune responses in five of eight patients across multiple human leukocyte antigen types. Median progression-free survival after vaccination was 6.2 months and median overall survival was 12.8 months. One patient with a strong mutation-specific T cell response after H3K27M-vac showed pseudoprogression followed by sustained complete remission for >31 months. Our data demonstrate safety and immunogenicity of H3K27M-vac in patients with progressive H3K27M+ diffuse midline glioma.


Asunto(s)
Neoplasias Encefálicas , Glioma , Vacunas , Humanos , Adulto , Animales , Ratones , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Histonas/genética , Glioma/genética , Glioma/terapia , Mutación/genética
7.
Nat Commun ; 14(1): 771, 2023 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-36774352

RESUMEN

Glioblastoma, the most common and aggressive primary brain tumor type, is considered an immunologically "cold" tumor with sparse infiltration by adaptive immune cells. Immunosuppressive tumor-associated myeloid cells are drivers of tumor progression. Therefore, targeting and reprogramming intratumoral myeloid cells is an appealing therapeutic strategy. Here, we investigate a ß-cyclodextrin nanoparticle (CDNP) formulation encapsulating the Toll-like receptor 7 and 8 (TLR7/8) agonist R848 (CDNP-R848) to reprogram myeloid cells in the glioma microenvironment. We show that intravenous monotherapy with CDNP-R848 induces regression of established syngeneic experimental glioma, resulting in increased survival rates compared with unloaded CDNP controls. Mechanistically, CDNP-R848 treatment reshapes the immunosuppressive tumor microenvironment and orchestrates tumor clearing by pro-inflammatory tumor-associated myeloid cells, independently of T cells and NK cells. Using serial magnetic resonance imaging, we identify a radiomic signature in response to CDNP-R848 treatment and ultrasmall superparamagnetic iron oxide (USPIO) imaging reveals that immunosuppressive macrophage recruitment is reduced by CDNP-R848. In conclusion, CDNP-R848 induces tumor regression in experimental glioma by targeting blood-borne macrophages without requiring adaptive immunity.


Asunto(s)
Glioma , Nanopartículas , Receptor Toll-Like 7 , Receptor Toll-Like 8 , Humanos , Adyuvantes Inmunológicos , Glioma/tratamiento farmacológico , Macrófagos , Linfocitos T , Receptor Toll-Like 7/agonistas , Microambiente Tumoral , Receptor Toll-Like 8/agonistas
8.
Cancer Cell ; 41(2): 235-251.e9, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36638785

RESUMEN

Cancer immunotherapy critically depends on fitness of cytotoxic and helper T cell responses. Dysfunctional cytotoxic T cell states in the tumor microenvironment (TME) are a major cause of resistance to immunotherapy. Intratumoral myeloid cells, particularly blood-borne myeloids (bbm), are key drivers of T cell dysfunction in the TME. We show here that major histocompatibility complex class II (MHCII)-restricted antigen presentation on bbm is essential to control the growth of brain tumors. Loss of MHCII on bbm drives dysfunctional intratumoral tumor-reactive CD8+ T cell states through increased chromatin accessibility and expression of Tox, a critical regulator of T cell exhaustion. Mechanistically, MHCII-dependent activation of CD4+ T cells restricts myeloid-derived osteopontin that triggers a chronic activation of NFAT2 in tumor-reactive CD8+ T cells. In summary, we provide evidence that MHCII-restricted antigen presentation on bbm is a key mechanism to directly maintain functional cytotoxic T cell states in brain tumors.


Asunto(s)
Neoplasias Encefálicas , Linfocitos T Citotóxicos , Humanos , Presentación de Antígeno , Linfocitos T CD8-positivos , Antígenos de Histocompatibilidad Clase II/metabolismo , Microambiente Tumoral
9.
Neurooncol Adv ; 3(1): vdab147, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34738084

RESUMEN

BACKGROUND: Glioblastomas, the most common primary malignant brain tumors, are considered immunologically cold malignancies due to growth in an immune sanctuary site. While peptide vaccines have shown to generate intra-tumoral antigen-specific T cells, the identification of these tumor-specific T cells is challenging and requires detailed analyses of tumor tissue. Several studies have shown that CNS antigens may be transported via lymphatic drainage to cervical lymph nodes, where antigen-specific T-cell responses can be generated. Therefore, we investigated whether glioma-draining lymph nodes (TDLN) may constitute a reservoir of tumor-reactive T cells. METHODS: We addressed our hypothesis by flow cytometric analyses of chicken ovalbumin (OVA)-specific CD8+ T cells as well as T-cell receptor beta (TCRß) next-generation-sequencing (TCRß-NGS) of T cells from tumor tissue, TDLN, spleen, and inguinal lymph nodes harvested from experimental mouse GL261 glioma models. RESULTS: Longitudinal dextramer-based assessment of specific CD8+ T cells from TDLN did not show tumor model antigen reactivity. Unbiased immunogenomic analysis revealed a low overlap of TCRß sequences from glioma-infiltrating CD8+ T cells between mice. Enrichment scores, calculated by the ratio of productive frequencies of the different TCRß-CDR3 amino-acid (aa) rearrangements of CD8+ T cells derived from tumor, TDLN, inguinal lymph nodes, and spleen demonstrated a higher proportion of tumor-associated TCR in the spleen compared to TDLN. CONCLUSIONS: In experimental glioblastoma, our data did not provide evidence that glioma-draining cervical lymph nodes are a robust reservoir for spontaneous glioma-specific T cells highlighting the requirement for detailed analyses of glioma-infiltrating T cells for the discovery of tumor-specific TCR.

10.
Oncoimmunology ; 10(1): 1920739, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-34026332

RESUMEN

Dendritic cell (DC) vaccination has proven to be an effective and safe adjuvant for cancer immunotherapies. As the presence of DCs within the tumor microenvironment promotes adaptive antitumor immunity, enhancement of DC migration toward the tumor microenvironment following DC vaccination might represent one possible approach to increase its therapeutic efficacy. While recent findings suggest the activity-regulated cytoskeleton-associated protein/activity-regulated gene 3.1 (Arc/Arg3.1) as critical regulator of DC migration in the context of autoimmune diseases, we aimed to investigate the impact of Arc/Arg3.1 expression for DC-based cancer vaccines. To this end, DC migration capacity as well as the induction of T cell-mediated antitumor immunity was assessed in an experimental B16 melanoma model with Arc/Arg3.1-/- and Arc/Arg3.1-expressing BMDCs applied as a subcutaneous vaccine. While antigen presentation on DCs was critical for unleashing effective T cell mediated antitumor immune responses, Arc/Arg3.1 expression enhanced DC migration toward the tumor and secondary lymphoid organs. Moreover, Arc/Arg3.1-expressing BMDCs shape the tumor immune microenvironment by facilitating tumor recruitment of antigen-specific effector T cells. Thus, Arc/Arg3.1 may represent a novel therapeutic target in DCs in order to increase the therapeutic efficacy of DC vaccination.


Asunto(s)
Vacunas contra el Cáncer , Melanoma Experimental , Animales , Citoesqueleto , Células Dendríticas , Melanoma Experimental/genética , Ratones , Ratones Endogámicos C57BL , Microambiente Tumoral , Vacunación
11.
Nat Commun ; 11(1): 931, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32071302

RESUMEN

Intrinsic malignant brain tumors, such as glioblastomas are frequently resistant to immune checkpoint blockade (ICB) with few hypermutated glioblastomas showing response. Modeling patient-individual resistance is challenging due to the lack of predictive biomarkers and limited accessibility of tissue for serial biopsies. Here, we investigate resistance mechanisms to anti-PD-1 and anti-CTLA-4 therapy in syngeneic hypermutated experimental gliomas and show a clear dichotomy and acquired immune heterogeneity in ICB-responder and non-responder tumors. We made use of this dichotomy to establish a radiomic signature predicting tumor regression after pseudoprogression induced by ICB therapy based on serial magnetic resonance imaging. We provide evidence that macrophage-driven ICB resistance is established by CD4 T cell suppression and Treg expansion in the tumor microenvironment via the PD-L1/PD-1/CD80 axis. These findings uncover an unexpected heterogeneity of response to ICB in strictly syngeneic tumors and provide a rationale for targeting PD-L1-expressing tumor-associated macrophages to overcome resistance to ICB.


Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Resistencia a Antineoplásicos/genética , Glioma/tratamiento farmacológico , Microambiente Tumoral/efectos de los fármacos , Animales , Antineoplásicos Inmunológicos/uso terapéutico , Antígeno B7-1/inmunología , Antígeno B7-1/metabolismo , Antígeno B7-H1/inmunología , Antígeno B7-H1/metabolismo , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Antígeno CTLA-4/antagonistas & inhibidores , Antígeno CTLA-4/inmunología , Antígeno CTLA-4/metabolismo , Línea Celular Tumoral/trasplante , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/inmunología , Femenino , Glioma/diagnóstico por imagen , Glioma/genética , Glioma/inmunología , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Imagen por Resonancia Magnética , Masculino , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA