Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biophys J ; 104(8): 1685-97, 2013 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-23601316

RESUMEN

Recent work has demonstrated that cardiomyocyte Ca(2+)release is desynchronized in several pathological conditions. Loss of Ca(2+) release synchrony has been attributed to t-tubule disruption, but it is unknown if other factors also contribute. We investigated this issue in normal and failing myocytes by integrating experimental data with a mathematical model describing spatiotemporal dynamics of Ca(2+) in the cytosol and sarcoplasmic reticulum (SR). Heart failure development in postinfarction mice was associated with progressive t-tubule disorganization, as quantified by fast-Fourier transforms. Data from fast-Fourier transforms were then incorporated in the model as a dyadic organization index, reflecting the proportion of ryanodine receptors located in dyads. With decreasing dyadic-organization index, the model predicted greater dyssynchrony of Ca(2+) release, which exceeded that observed in experimental line-scan images. Model and experiment were reconciled by reducing the threshold for Ca(2+) release in the model, suggesting that increased RyR sensitivity partially offsets the desynchronizing effects of t-tubule disruption in heart failure. Reducing the magnitude of SR Ca(2+) content and release, whether experimentally by thapsigargin treatment, or in the model, desynchronized the Ca(2+) transient. However, in cardiomyocytes isolated from SERCA2 knockout mice, RyR sensitization offset such effects. A similar interplay between RyR sensitivity and SR content was observed during treatment of myocytes with low-dose caffeine. Initial synchronization of Ca(2+) release during caffeine was reversed as SR content declined due to enhanced RyR leak. Thus, synchrony of cardiomyocyte Ca(2+) release is not only determined by t-tubule organization but also by the interplay between RyR sensitivity and SR Ca(2+) content.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Sarcolema/ultraestructura , Retículo Sarcoplasmático/metabolismo , Animales , Cafeína/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Citosol/metabolismo , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocitos Cardíacos/ultraestructura , Canal Liberador de Calcio Receptor de Rianodina/efectos de los fármacos , Sarcolema/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Tapsigargina/farmacología
2.
Cardiovasc Res ; 90(3): 503-12, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21242164

RESUMEN

AIMS: In this manuscript, we determined the roles of the sarcoendoplasmic reticulum Ca(2+) ATPase 2 (SERCA2) and the ryanodine receptor (RyR) in Ca(2+) wave development during ß-adrenergic stimulation. METHODS AND RESULTS: SERCA2 knockout mice (KO) were used 6 days after cardio-specific gene deletion, with left ventricular SERCA2a abundance reduced by 54 ± 9% compared with SERCA2(flox/flox) controls (FF) (P < 0.05). Ca(2+) waves occurred in fewer KO than FF myocytes (40 vs. 68%, P < 0.05), whereas the addition of isoproterenol (ISO) induced waves in an equal percentage of myocytes (82 vs. 64%). SERCA2-dependent Ca(2+) reuptake was slower in KO (-ISO, KO vs. FF: 15.4 ± 1.2 vs. 21.1 ± 1.4 s(-1), P < 0.05), but equal during ISO (+ISO, KO vs. FF: 21.9 ± 3.3 vs. 27.7 ± 2.7 s(-1)). Threshold SR Ca(2+) content for wave development was lower in KO (-ISO, KO vs. FF: 126.6 ± 10.3 vs. 159.3 ± 7.1 µmol/L, P < 0.05) and was increased by ISO only in FF (+ISO, KO vs. FF: 131.7 ± 8.7 vs. 205.5 ± 20.4 µmol/L, P < 0.05). During ISO, Ca(2+)/calmodulin-dependent kinase II (CaMKII)-dependent phosphorylation of RyR in KO was 217 ± 21% of FF (P < 0.05), and SR Ca(2+) leak indicated higher RyR open probability in KO. CaMKII inhibition decreased Ca(2+) spark frequency in KO by 44% (P < 0.05) but not in FF. Mathematical modelling predicted that increased Ca(2+) sensitivity of RyR in KO could account for increased Ca(2+) wave probability during ISO. CONCLUSIONS: In ventricular cardiomyocytes with reduced SERCA2 abundance, Ca(2+) wave development following ß-adrenergic stimulation is potentiated. We suggest that this is caused by a CaMKII-dependent shift in the balance between SERCA2-dependent Ca(2+) reuptake and threshold SR Ca(2+) content.


Asunto(s)
Señalización del Calcio/fisiología , Miocitos Cardíacos/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Retículo Sarcoplasmático/metabolismo , Agonistas Adrenérgicos beta/farmacología , Animales , Señalización del Calcio/efectos de los fármacos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Isoproterenol/farmacología , Ratones , Ratones Noqueados , Modelos Cardiovasculares , Miocitos Cardíacos/efectos de los fármacos , Fosforilación , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/efectos de los fármacos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/deficiencia , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética
3.
J Membr Biol ; 235(2): 121-9, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20512319

RESUMEN

Certain antimicrobial peptides from multicellular animals kill a variety of tumor cells at concentrations not affecting normal eukaryotic cells. Recently, it was reported that also plantaricin A (PlnA), which is a peptide pheromone with strain-specific antibacterial activity produced by Lactobacillus plantarum, permeabilizes cancerous rat pituitary cells (GH(4) cells), whereas normal rat anterior pituitary cells are resistant to the peptide. To examine whether the preferential permeabilization of cancerous cells is a general feature of PlnA, we studied its effect on primary cultures of cells from rat liver (hepatocytes, endothelial, and Kupffer cells) and rat kidney cortex, as well as two epithelial cell lines of primate kidney origin (Vero cells from green monkey and human Caki-2 cells). The Vero cell line is derived from normal cells, whereas the Caki-2 cell line is derived from a cancerous tumor. The membrane effects were studied by patch clamp recordings and microfluorometric (fura-2) monitoring of the cytosolic concentrations of Ca(2+) ([Ca(2+)](i)) and fluorophore. In all the tested cell types except Kupffer cells, exposure to 10-100 microM PlnA induced a nearly instant permeabilization of the membrane, indicated by the following criteria: increased membrane conductance, membrane depolarization, increased [Ca(2+)](i), and diffusional loss of fluorophore from the cytosol. At a concentration of 5 microM, PlnA had no effect on any of the cell types. The Kupffer cells were permeabilized by 500 microM PlnA. We conclude that the permeabilizing effect of PlnA is not restricted to cancerous cells.


Asunto(s)
Bacteriocinas/metabolismo , Riñón/citología , Lactobacillus plantarum/metabolismo , Hígado/citología , Animales , Células Cultivadas , Chlorocebus aethiops , Citofotometría , Electrofisiología , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Humanos , Lactobacillus plantarum/crecimiento & desarrollo , Masculino , Ratas , Ratas Wistar , Células Vero/metabolismo , Células Vero/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...