Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
BMC Genomics ; 12: 423, 2011 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-21854623

RESUMEN

BACKGROUND: Phloem-feeding aphids deprive plants of assimilates, but mostly manage to avoid causing the mechanical tissue damage inflicted by chewing insects. Nevertheless, jasmonate signalling that is induced by infestation is important in mediating resistance to phloem feeders. Aphid attack induces the jasmonic acid signalling pathway, but very little is known about the specific impact jasmonates have on the expression of genes that respond to aphid attack. RESULTS: We have evaluated the function that jasmonates have in regulating Arabidopsis thaliana responses to cabbage aphid (Brevicoryne brassicae) by conducting a large-scale transcriptional analysis of two mutants: aos, which is defective in jasmonate production, and fou2, which constitutively induces jasmonic acid biosynthesis. This analysis enabled us to determine which genes' expression patterns depend on the jasmonic acid signalling pathway. We identified more than 200 genes whose expression in non-challenged plants depended on jasmonate levels and more than 800 genes that responded differently to infestation in aos and fou2 plants than in wt. Several aphid-induced changes were compromised in the aos mutant, particularly genes connected to regulation of transcription, defence responses and redox changes. Due to jasmonate-triggered pre-activation of fou2, its transcriptional profile in non-challenged plants mimicked the induction of defence responses in wt. Additional activation of fou2 upon aphid attack was therefore limited. Insect fitness experiments revealed that the physiological consequences of fou2 mutation contributed to more effective protection against B. brassicae. However, the observed resistance of the fou2 mutant was based on antibiotic rather than feeding deterrent properties of the mutant as indicated by an analysis of aphid feeding behaviour. CONCLUSIONS: Analysis of transcriptional profiles of wt, aos and fou2 plants revealed that the expression of more than 200 genes is dependent on jasmonate status, regardless of external stimuli. Moreover, the aphid-induced response of more than 800 transcripts is regulated by jasmonate signalling. Thus, in plants lacking jasmonates many of the defence-related responses induced by infestation in wt plants are impaired. Constant up-regulation of jasmonate signalling as evident in the fou2 mutant causes reduction in aphid population growth, likely as a result of antibiotic properties of fou2 plants. However, aos mutation does not seem to affect aphid performance when the density of B. brassicae populations on plants is low and aphids are free to move around.


Asunto(s)
Áfidos/fisiología , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Oxilipinas/metabolismo , Transducción de Señal , Animales , Arabidopsis/genética , Conducta Alimentaria , Perfilación de la Expresión Génica , Herbivoria , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Transcriptoma
2.
BMC Genomics ; 11: 190, 2010 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-20307264

RESUMEN

BACKGROUND: Glutamate plays a central position in the synthesis of a variety of organic molecules in plants and is synthesised from nitrate through a series of enzymatic reactions. Glutamate synthases catalyse the last step in this pathway and two types are present in plants: NADH- or ferredoxin-dependent. Here we report a genome wide microarray analysis of the transcriptional reprogramming that occurs in leaves and roots of the A. thaliana mutant glu1-2 knocked-down in the expression of Fd-GOGAT1 (GLU1; At5g04140), one of the two genes of A. thaliana encoding ferredoxin-dependent glutamate synthase. RESULTS: Transcriptional profiling of glu1-2 revealed extensive changes with the expression of more than 5500 genes significantly affected in leaves and nearly 700 in roots. Both genes involved in glutamate biosynthesis and transformation are affected, leading to changes in amino acid compositions as revealed by NMR metabolome analysis. An elevated glutamine level in the glu1-2 mutant was the most prominent of these changes. An unbiased analysis of the gene expression datasets allowed us to identify the pathways that constitute the secondary response of an FdGOGAT1/GLU1 knock-down. Among the most significantly affected pathways, photosynthesis, photorespiratory cycle and chlorophyll biosynthesis show an overall downregulation in glu1-2 leaves. This is in accordance with their slight chlorotic phenotype. Another characteristic of the glu1-2 transcriptional profile is the activation of multiple stress responses, mimicking cold, heat, drought and oxidative stress. The change in expression of genes involved in flavonoid biosynthesis is also revealed. The expression of a substantial number of genes encoding stress-related transcription factors, cytochrome P450 monooxygenases, glutathione S-transferases and UDP-glycosyltransferases is affected in the glu1-2 mutant. This may indicate an induction of the detoxification of secondary metabolites in the mutant. CONCLUSIONS: Analysis of the glu1-2 transcriptome reveals extensive changes in gene expression profiles revealing the importance of Fd-GOGAT1, and indirectly the central role of glutamate, in plant development. Besides the effect on genes involved in glutamate synthesis and transformation, the glu1-2 mutant transcriptome was characterised by an extensive secondary response including the downregulation of photosynthesis-related pathways and the induction of genes and pathways involved in the plant response to a multitude of stresses.


Asunto(s)
Aminoácido Oxidorreductasas/genética , Arabidopsis/enzimología , Regulación de la Expresión Génica de las Plantas , Mutación , Estrés Fisiológico , Arabidopsis/genética , Perfilación de la Expresión Génica , Ácido Glutámico/biosíntesis , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Transcripción Genética
3.
Stat Appl Genet Mol Biol ; 9: Article 3, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20196753

RESUMEN

We present a Bayesian hierarchical model for quantitative real-time polymerase chain reaction (PCR) data, aiming at relative quantification of DNA copy number in different biological samples. The model is specified in terms of a hidden Markov model for fluorescence intensities measured at successive cycles of the polymerase chain reaction. The efficiency of the reaction is assumed to depend on the abundance of the target DNA through fluorescence intensities, and the relationship is specified based on the kinetics of the reaction. The model incorporates the intrinsic random nature of the process as well as measurement error. Taking a Bayesian inferential approach, marginal posterior distributions of the quantities of interest are estimated using Markov chain Monte Carlo. The method is applied to simulated data and an experimental data set.


Asunto(s)
Teorema de Bayes , Modelos Estadísticos , Reacción en Cadena de la Polimerasa/estadística & datos numéricos , Algoritmos , Animales , Secuencia de Bases , Bioestadística , ADN/análisis , ADN/genética , Cartilla de ADN/genética , Interpretación Estadística de Datos , Femenino , Expresión Génica/efectos de los fármacos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Cadenas de Markov , Método de Montecarlo , Octreótido/farmacología , Ratas , Ratas Sprague-Dawley , Procesos Estocásticos
4.
PLoS One ; 4(11): e7817, 2009 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-19915673

RESUMEN

BACKGROUND: SET-domain proteins are histone lysine (K) methyltransferases (HMTase) implicated in defining transcriptionally permissive or repressive chromatin. The Arabidopsis ASH1 HOMOLOG 2 (ASHH2) protein (also called SDG8, EFS and CCR1) has been suggested to methylate H3K4 and/or H3K36 and is similar to Drosophila ASH1, a positive maintainer of gene expression, and yeast Set2, a H3K36 HMTase. Mutation of the ASHH2 gene has pleiotropic developmental effects. Here we focus on the role of ASHH2 in plant reproduction. METHODOLOGY/PRINCIPAL FINDINGS: A slightly reduced transmission of the ashh2 allele in reciprocal crosses implied involvement in gametogenesis or gamete function. However, the main requirement of ASHH2 is sporophytic. On the female side, close to 80% of mature ovules lack embryo sac. On the male side, anthers frequently develop without pollen sacs or with specific defects in the tapetum layer, resulting in reduction in the number of functional pollen per anther by up to approximately 90%. In consistence with the phenotypic findings, an ASHH2 promoter-reporter gene was expressed at the site of megaspore mother cell formation as well as tapetum layers and pollen. ashh2 mutations also result in homeotic changes in floral organ identity. Transcriptional profiling identified more than 300 up-regulated and 600 down-regulated genes in ashh2 mutant inflorescences, whereof the latter included genes involved in determination of floral organ identity, embryo sac and anther/pollen development. This was confirmed by real-time PCR. In the chromatin of such genes (AP1, AtDMC1 and MYB99) we observed a reduction of H3K36 trimethylation (me3), but not H3K4me3 or H3K36me2. CONCLUSIONS/SIGNIFICANCE: The severe distortion of reproductive organ development in ashh2 mutants, argues that ASHH2 is required for the correct expression of genes essential to reproductive development. The reduction in the ashh2 mutant of H3K36me3 on down-regulated genes relevant to the observed defects, implicates ASHH2 in regulation of gene expression via H3K36 trimethylation in chromatin of Arabidopsis inflorescences.


Asunto(s)
Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , N-Metiltransferasa de Histona-Lisina/genética , Proteínas de Plantas/metabolismo , Alelos , Cromatina/química , Cruzamientos Genéticos , Regulación hacia Abajo , Perfilación de la Expresión Génica , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/fisiología , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Óvulo Vegetal/genética , Fenotipo , Polen , Transcripción Genética
5.
Plant Cell Environ ; 31(8): 1097-115, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18433442

RESUMEN

Insect feeding on plants causes a complex series of coordinated defence responses. Little is known, however, about the time-dependent aspect of induced changes. Here we present a time series-based investigation of Arabidopsis thaliana Ler subjected to attack by a specialist pest of Brassicaceae species, Brevicoryne brassicae. Transcriptome and metabolome changes were studied at 6, 12, 24 and 48 h after infestation to monitor the progress of early induced responses. The use of full-genome oligonucleotide microarrays revealed the initiation of extensive gene expression changes already during the first 6 h of infestation. Data indicated the involvement of reactive oxygen species (ROS) and calcium in early signalling, and salicylic acid (SA) and jasmonic acid (JA) in the regulation of defence responses. Transcripts related to senescence, biosynthesis of anti-insect proteins, indolyl glucosinolates (GS) and camalexin, as well as several uncharacterized to date WRKY transcription factors, were induced. Follow-up studies of defence-involved secondary metabolites revealed depositions of callose at the insects' feeding sites, a decrease in the total level of aliphatic GS, particularly 3-hydroxypropyl glucosinolate, and accumulation of 4-methoxyindol-3-ylmethyl glucosinolate 48 h after the attack. The novel role of camalexin, induced as a part of defence against aphids, was verified in fitness experiments. Fecundity of B. brassicae was reduced on camalexin-accumulating wild-type (WT) plants as compared with camalexin-deficient pad3-1 mutants. Based on experimental data, a model of plant-aphid interactions at the early phase of infestation was proposed.


Asunto(s)
Áfidos/fisiología , Arabidopsis/inmunología , Arabidopsis/parasitología , Brassica/parasitología , Animales , Áfidos/efectos de los fármacos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Señalización del Calcio/efectos de los fármacos , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Pared Celular/parasitología , Ciclopentanos/farmacología , Etilenos/farmacología , Fertilidad/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Glucosinolatos/metabolismo , Peróxido de Hidrógeno/metabolismo , Indoles/metabolismo , Modelos Biológicos , Estrés Oxidativo/efectos de los fármacos , Oxilipinas/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Hojas de la Planta/parasitología , Ácido Salicílico/farmacología , Tiazoles/metabolismo , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética/efectos de los fármacos
6.
BMC Bioinformatics ; 9: 117, 2008 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-18298817

RESUMEN

BACKGROUND: Choosing the appropriate sample size is an important step in the design of a microarray experiment, and recently methods have been proposed that estimate sample sizes for control of the False Discovery Rate (FDR). Many of these methods require knowledge of the distribution of effect sizes among the differentially expressed genes. If this distribution can be determined then accurate sample size requirements can be calculated. RESULTS: We present a mixture model approach to estimating the distribution of effect sizes in data from two-sample comparative studies. Specifically, we present a novel, closed form, algorithm for estimating the noncentrality parameters in the test statistic distributions of differentially expressed genes. We then show how our model can be used to estimate sample sizes that control the FDR together with other statistical measures like average power or the false nondiscovery rate. Method performance is evaluated through a comparison with existing methods for sample size estimation, and is found to be very good. CONCLUSION: A novel method for estimating the appropriate sample size for a two-sample comparative microarray study is presented. The method is shown to perform very well when compared to existing methods.


Asunto(s)
Algoritmos , Perfilación de la Expresión Génica/métodos , Modelos Genéticos , Modelos Estadísticos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Simulación por Computador , Tamaño de la Muestra , Distribuciones Estadísticas
7.
Trends Plant Sci ; 12(2): 46-50, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17229587

RESUMEN

DNA microarray experiments have become a widely used tool for studying gene expression. An important, but difficult, part of these experiments is deciding on the appropriate number of biological replicates to use. Often, researchers will want a number of replicates that give sufficient power to recognize regulated genes while controlling the false discovery rate (FDR) at an acceptable level. Recent advances in statistical methodology can now help to resolve this issue. Before using such methods it is helpful to understand the reasoning behind them. In this Research Focus article we explain, in an intuitive way, the effect sample size has on the FDR and power, and then briefly survey some recently proposed methods in this field of research and provide an example of use.


Asunto(s)
Perfilación de la Expresión Génica/normas , Análisis de Secuencia por Matrices de Oligonucleótidos/normas , Interpretación Estadística de Datos , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Reproducibilidad de los Resultados , Proyectos de Investigación , Tamaño de la Muestra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA