Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biol Chem ; 399(6): 577-582, 2018 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-29498931

RESUMEN

The generation of authentic mouse-models for human α1-antitrypsin (A1AT)-deficiency is difficult due to the high complexity of the mouse Serpina1 gene locus. Depending on the exact mouse strain, three to five paralogs are expressed, with different proteinase inhibitory properties. Nowadays with CRISPR-technology, genome editing of complex genomic loci is feasible and could be employed for the generation of A1AT-deficiency mouse models. In preparation of a CRISPR/Cas9-based genome-engineering approach we identified cDNA clones with a functional CDS for the Serpina1-paralog DOM-7. Here, we show that DOM-7 functionally inhibits neutrophil elastase (ELANE) and chymotrypsin, and therefore needs to be considered when aiming at the generation of A1AT-deficient models.


Asunto(s)
alfa 1-Antitripsina/metabolismo , Animales , Ratones , Ratones Endogámicos BALB C
2.
FASEB J ; 31(11): 5102-5110, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28768722

RESUMEN

Macrophage migration inhibitory factor (MIF) is a key proinflammatory mediator that we have previously shown to be associated with an aggressive clinical phenotype in cystic fibrosis. It possesses unique tautomerase enzymatic activity. However, to date, no human-derived substrate has been identified that has the capacity to interact with this cytokine's unique tautomerase activity. This led us to hypothesize that MIF may have the capacity to interact with external substrates. We describe for the first time how Pseudomonas aeruginosa can utilize human recombinant MIF (rMIF) to significantly (P < 0.01) enhance its endogenous biofilm formation. Our in vivo studies demonstrate that utilizing a small-molecular-weight inhibitor targeting MIF's tautomerase activity (SCD-19) significantly reduces the inflammatory response in a murine pulmonary chronic P. aeruginosa model. In addition, we show that in in vitro experiments, pretreatment of P. aeruginosa with rMIF is associated with reduced bacterial killing by tobramycin. Our novel findings support the concept of an anti-MIF strategy that targets this enzymatic activity as a potential future antibacterial therapeutic approach.-Tynan, A., Mawhinney, L., Armstrong, M. E., O'Reilly, C., Kennedy, S., Caraher, E., Jülicher, K., O'Dwyer, D., Maher, L., Schaffer, K., Fabre, A., McKone, E. F., Leng, L., Bucala, R., Bernhagen, J., Cooke, G., Donnelly, S. C. Macrophage migration inhibitory factor enhances Pseudomonas aeruginosa biofilm formation, potentially contributing to cystic fibrosis pathogenesis.


Asunto(s)
Fibrosis Quística/metabolismo , Oxidorreductasas Intramoleculares/metabolismo , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Pseudomonas aeruginosa/fisiología , Animales , Biopelículas/crecimiento & desarrollo , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/microbiología , Modelos Animales de Enfermedad , Oxidorreductasas Intramoleculares/farmacología , Factores Inhibidores de la Migración de Macrófagos/farmacología , Ratones , Proteínas Recombinantes/farmacología , Tobramicina/farmacología
3.
Thromb Haemost ; 115(1): 200-12, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26310191

RESUMEN

S-nitrosation of macrophage migration inhibitory factor (MIF) has been shown to be cytoprotective in myocardial ischaemia/reperfusion (I/R) injury. Since the exact mechanism of action is unknown, we here characterise the cardioprotective effects of targeted intracellular accumulation of MIF in myocardial I/R injury. We used different in vivo, ex vivo and in vitro models of myocardial I/R and hypoxia/reoxygenation (H/R) injury to determine MIF levels by immunoblots and ELISA in different phases of reperfusion and reoxygenation, respectively. We discovered a rapid decrease of cardiac MIF that was specific to the early phase of reperfusion. Posttranslational modification of MIF via S-nitrosation--proofed by a modified version of the Biotin Switch Assay--prevented this rapid decrease, leading to a targeted intracellular accumulation of MIF in the early phase of reperfusion. Intracellular MIF accumulation preserved the intracellular ability of MIF to reduce oxidative stress as shown by hydrogen peroxide and aconitase activity measurements. Infarct size measurements by TTC staining showed an overall enhanced cardioprotective effect of this protein by reduction of reperfusion injury. In summary, we have unravelled a novel mechanism of MIF-mediated cardioprotection. Targeted intracellular accumulation of MIF by S-nitrosation may offer a novel therapeutic approach in the treatment of myocardial I/R-injury.


Asunto(s)
Oxidorreductasas Intramoleculares/metabolismo , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/metabolismo , Aconitato Hidratasa/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Peróxido de Hidrógeno/metabolismo , Oxidorreductasas Intramoleculares/deficiencia , Oxidorreductasas Intramoleculares/genética , Factores Inhibidores de la Migración de Macrófagos/deficiencia , Factores Inhibidores de la Migración de Macrófagos/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/patología , Nitrosación , Estrés Oxidativo , Procesamiento Proteico-Postraduccional , Factores de Tiempo
4.
Int J Med Microbiol ; 303(3): 140-9, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23517690

RESUMEN

Obligate Wolbachia endobacteria have a reduced genome and retained genes are hypothesized to be crucial for survival. Although intracellular bacteria do not need a stress-bearing peptidoglycan cell wall, Wolbachia encode proteins necessary to synthesize the peptidoglycan precursor lipid II. The activity of the enzymes catalyzing the last two steps of this pathway was previously shown, and Wolbachia are sensitive to inhibition of lipid II synthesis. A puzzling characteristic of Wolbachia is the lack of genes for l-amino acid racemases essential for lipid II synthesis. Transcription analysis showed the expression of a possible alternative racemase metC, and recombinant Wolbachia MetC indeed had racemase activity that may substitute for the absent l-Ala racemase. However, enzymes needed to form mature peptidoglycan are absent and the function of Wolbachia lipid II is unknown. Inhibition of lipid II biosynthesis resulted in enlargement of Wolbachia cells and redistribution of Wolbachia peptidoglycan-associated lipoprotein, demonstrating that lipid II is required for coordinated cell division and may interact with the lipoprotein. We conclude that lipid II is essential for Wolbachia cell division and that this function is potentially conserved in the Gram-negative bacteria.


Asunto(s)
División Celular , Pared Celular/metabolismo , Uridina Difosfato Ácido N-Acetilmurámico/análogos & derivados , Wolbachia/fisiología , Animales , Artrópodos/microbiología , Vías Biosintéticas/genética , Perfilación de la Expresión Génica , Nematodos/microbiología , Peptidoglicano/biosíntesis , Uridina Difosfato Ácido N-Acetilmurámico/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA