Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ann Neurol ; 96(2): 262-275, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38767012

RESUMEN

OBJECTIVE: This study was undertaken to investigate the effects of dietary caffeine intake on striatal dopamine function and clinical symptoms in Parkinson disease in a cross-sectional and longitudinal setting. METHODS: One hundred sixty-three early Parkinson disease patients and 40 healthy controls were investigated with [123I]FP-CIT single photon emission computed tomography, and striatal dopamine transporter binding was evaluated in association with the level of daily coffee consumption and clinical measures. After a median interval of 6.1 years, 44 patients with various caffeine consumption levels underwent clinical and imaging reexamination including blood caffeine metabolite profiling. RESULTS: Unmedicated early Parkinson disease patients with high coffee consumption had 8.3 to 15.4% lower dopamine transporter binding in all studied striatal regions than low consumers, after accounting for age, sex, and motor symptom severity. Higher caffeine consumption was further associated with a progressive decline in striatal binding over time. No significant effects of caffeine on motor function were observed. Blood analyses demonstrated a positive correlation between caffeine metabolites after recent caffeine intake and dopamine transporter binding in the ipsilateral putamen. INTERPRETATION: Chronic caffeine intake prompts compensatory and cumulative dopamine transporter downregulation, consistent with caffeine's reported risk reduction in Parkinson disease. However, this decline does not manifest in symptom changes. Transiently increased dopamine transporter binding after recent caffeine intake has implications for dopaminergic imaging guidelines. ANN NEUROL 2024;96:262-275.


Asunto(s)
Cafeína , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Enfermedad de Parkinson , Humanos , Cafeína/administración & dosificación , Masculino , Femenino , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/diagnóstico por imagen , Persona de Mediana Edad , Anciano , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Estudios Transversales , Dopamina/metabolismo , Tomografía Computarizada de Emisión de Fotón Único , Estudios Longitudinales , Café , Cuerpo Estriado/metabolismo , Cuerpo Estriado/diagnóstico por imagen , Cuerpo Estriado/efectos de los fármacos , Tropanos
2.
Brain ; 147(6): 2203-2213, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38797521

RESUMEN

Stuttering affects approximately 1 in 100 adults and can result in significant communication problems and social anxiety. It most often occurs as a developmental disorder but can also be caused by focal brain damage. These latter cases may lend unique insight into the brain regions causing stuttering. Here, we investigated the neuroanatomical substrate of stuttering using three independent datasets: (i) case reports from the published literature of acquired neurogenic stuttering following stroke (n = 20, 14 males/six females, 16-77 years); (ii) a clinical single study cohort with acquired neurogenic stuttering following stroke (n = 20, 13 males/seven females, 45-87 years); and (iii) adults with persistent developmental stuttering (n = 20, 14 males/six females, 18-43 years). We used the first two datasets and lesion network mapping to test whether lesions causing acquired stuttering map to a common brain network. We then used the third dataset to test whether this lesion-based network was relevant to developmental stuttering. In our literature dataset, we found that lesions causing stuttering occurred in multiple heterogeneous brain regions, but these lesion locations were all functionally connected to a common network centred around the left putamen, including the claustrum, amygdalostriatal transition area and other adjacent areas. This finding was shown to be specific for stuttering (PFWE < 0.05) and reproducible in our independent clinical cohort of patients with stroke-induced stuttering (PFWE < 0.05), resulting in a common acquired stuttering network across both stroke datasets. Within the common acquired stuttering network, we found a significant association between grey matter volume and stuttering impact for adults with persistent developmental stuttering in the left posteroventral putamen, extending into the adjacent claustrum and amygdalostriatal transition area (PFWE < 0.05). We conclude that lesions causing acquired neurogenic stuttering map to a common brain network, centred to the left putamen, claustrum and amygdalostriatal transition area. The association of this lesion-based network with symptom severity in developmental stuttering suggests a shared neuroanatomy across aetiologies.


Asunto(s)
Encéfalo , Accidente Cerebrovascular , Tartamudeo , Humanos , Tartamudeo/patología , Tartamudeo/etiología , Masculino , Femenino , Persona de Mediana Edad , Adulto , Adolescente , Anciano , Anciano de 80 o más Años , Adulto Joven , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/patología , Imagen por Resonancia Magnética , Mapeo Encefálico/métodos
3.
Mov Disord ; 39(6): 1037-1043, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38586892

RESUMEN

BACKGROUND: Emotions are reflected in bodily sensations, and these reflections are abnormal in psychiatric conditions. However, emotion-related bodily sensations have not been studied in neurological disorders. OBJECTIVE: The aim of this study was to investigate whether Parkinson's disease (PD) is associated with altered bodily representations of emotions. METHODS: Symptoms and emotion-related sensations were investigated in 380 patients with PD and 79 control subjects, using a topographical self-report method, termed body sensation mapping. The bodily mapping data were analyzed with pixelwise generalized linear models and principal component analyses. RESULTS: Bodily maps of symptoms showed characteristic patterns of PD motor symptom distributions. Compared with control subjects, PD patients showed decreased parasternal sensation of anger, and longer PD symptom duration was associated with increased abdominal sensation of anger (PFWE < 0.05). The PD-related sensation patterns were abnormal across all basic emotions (P < 0.05). CONCLUSIONS: The results demonstrate altered bodily maps of emotions in PD, providing novel insight into the nonmotor effects of PD. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Emociones , Enfermedad de Parkinson , Sensación , Estudios de Casos y Controles , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/psicología , Sensación/fisiología , Emociones/fisiología , Humanos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Bosques Aleatorios , Imagen Corporal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA