Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Invest Dermatol ; 141(3): 628-637.e15, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32777214

RESUMEN

BRAFV600E is the most common driver mutation in human cutaneous melanoma and is frequently accompanied by loss of the tumor-suppressing phosphatase PTEN. Recent evidence suggests a co-operative role for RAC1 activity in BRAFV600E-driven melanoma progression and drug resistance. However, the underlying molecular mechanisms and the role of RAC1 downstream targets are not well-explored. In this study, we examine the role of the NCKAP1 subunit of the pentameric cytoskeletal SCAR/WAVE complex, a major downstream target of RAC1, in a mouse model of melanoma driven by BRAFV600E;PTEN loss. The SCAR/WAVE complex is the major driver of lamellipodia formation and cell migration downstream of RAC1 and depends on NCKAP1 for its integrity. Targeted deletion of Nckap1 in the melanocyte lineage delayed tumor onset and progression of a mutant Braf;Pten loss‒driven melanoma mouse model. Nckap1-depleted tumors displayed fibrotic stroma with increased collagen deposition concomitant with enhanced immune infiltration. Nckap1 loss slowed proliferation and tumor growth, highlighting a role in cell-cycle progression. Altogether, we propose that NCKAP1-orchestrated actin polymerization is essential for tumor progression and maintenance of tumor tissue integrity in a mutant Braf/Pten loss‒driven mouse model for melanoma.


Asunto(s)
Melanoma/patología , Proteínas de la Membrana/metabolismo , Neuropéptidos/metabolismo , Neoplasias Cutáneas/patología , Proteína de Unión al GTP rac1/metabolismo , Animales , Proliferación Celular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Melanoma/genética , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Fosfohidrolasa PTEN/genética , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias Cutáneas/genética
2.
Development ; 147(22)2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-33028610

RESUMEN

The Arp2/3 complex is essential for the assembly of branched filamentous actin, but its role in physiology and development is surprisingly little understood. Melanoblasts deriving from the neural crest migrate along the developing embryo and traverse the dermis to reach the epidermis, colonising the skin and eventually homing within the hair follicles. We have previously established that Rac1 and Cdc42 direct melanoblast migration in vivo We hypothesised that the Arp2/3 complex might be the main downstream effector of these small GTPases. Arp3 depletion in the melanocyte lineage results in severe pigmentation defects in dorsal and ventral regions of the mouse skin. Arp3 null melanoblasts demonstrate proliferation and migration defects and fail to elongate as their wild-type counterparts. Conditional deletion of Arp3 in primary melanocytes causes improper proliferation, spreading, migration and adhesion to extracellular matrix. Collectively, our results suggest that the Arp2/3 complex is absolutely indispensable in the melanocyte lineage in mouse development, and indicate a significant role in developmental processes that require tight regulation of actin-mediated motility.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Adhesión Celular , Proliferación Celular , Melanocitos/metabolismo , Pigmentación de la Piel , Piel/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/genética , Animales , Línea Celular , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Melanocitos/citología , Ratones , Neuropéptidos/genética , Neuropéptidos/metabolismo , Piel/citología , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo
3.
Nat Commun ; 9(1): 3633, 2018 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-30194301

RESUMEN

Currently, little is known about the evolution of epigenetic regulation in animal stem cells. Here we demonstrate, using the planarian stem cell system to investigate the role of the COMPASS family of MLL3/4 histone methyltransferases that their function as tumor suppressors in mammalian stem cells is conserved over a long evolutionary distance. To investigate the potential conservation of a genome-wide epigenetic regulatory program in animal stem cells, we assess the effects of Mll3/4 loss of function by performing RNA-seq and ChIP-seq on the G2/M planarian stem cell population, part of which contributes to the formation of outgrowths. We find many oncogenes and tumor suppressors among the affected genes that are likely candidates for mediating MLL3/4 tumor suppression function. Our work demonstrates conservation of an important epigenetic regulatory program in animals and highlights the utility of the planarian model system for studying epigenetic regulation.


Asunto(s)
Epigénesis Genética , Evolución Molecular , Histona Metiltransferasas/fisiología , Células Madre Pluripotentes/fisiología , Proteínas Supresoras de Tumor/fisiología , Animales , Neurogénesis , Oncogenes , Planarias , Regeneración
4.
J Invest Dermatol ; 137(10): 2197-2207, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28647344

RESUMEN

On acquisition of an oncogenic mutation, primary human and mouse cells can enter oncogene-induced senescence (OIS). OIS is characterized by a stable proliferation arrest and secretion of proinflammatory cytokines and chemokines, the senescence-associated secretory phenotype. Proliferation arrest and the senescence-associated secretory phenotype collaborate to enact tumor suppression, the former by blocking cell proliferation and the latter by recruiting immune cells to clear damaged cells. However, the interactions of OIS cells with the immune system are still poorly defined. Here, we show that engagement of OIS in primary human melanocytes, specifically by melanoma driver mutations NRASQ61K and BRAFV600E, causes expression of the major histocompatibility class II antigen presentation apparatus, via secreted IL-1ß signaling and expression of CIITA, a master regulator of major histocompatibility class II gene transcription. In vitro, OIS melanocytes activate T-cell proliferation. In vivo, nonproliferating oncogene-expressing melanocytes localize to skin-draining lymph nodes, where they induce T-cell proliferation and an antigen presentation gene expression signature. In patients, expression of major histocompatibility class II in melanoma is linked to favorable disease outcome. We propose that OIS in melanocytes is accompanied by an antigen presentation phenotype, likely to promote tumor suppression via activation of the adaptive immune system.


Asunto(s)
Genes MHC Clase II/genética , Melanocitos/metabolismo , Melanoma/genética , Oncogenes/genética , Regulación hacia Arriba , Animales , Línea Celular Tumoral , Proliferación Celular , Senescencia Celular , Humanos , Melanocitos/patología , Melanoma/metabolismo , Melanoma/patología , Ratones , Transducción de Señal
5.
Genome Biol ; 17(1): 158, 2016 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-27457071

RESUMEN

BACKGROUND: Histone modification H4K20me3 and its methyltransferase SUV420H2 have been implicated in suppression of tumorigenesis. The underlying mechanism is unclear, although H4K20me3 abundance increases during cellular senescence, a stable proliferation arrest and tumor suppressor process, triggered by diverse molecular cues, including activated oncogenes. Here, we investigate the function of H4K20me3 in senescence and tumor suppression. RESULTS: Using immunofluorescence and ChIP-seq we determine the distribution of H4K20me3 in proliferating and senescent human cells. Altered H4K20me3 in senescence is coupled to H4K16ac and DNA methylation changes in senescence. In senescent cells, H4K20me3 is especially enriched at DNA sequences contained within specialized domains of senescence-associated heterochromatin foci (SAHF), as well as specific families of non-genic and genic repeats. Altered H4K20me3 does not correlate strongly with changes in gene expression between proliferating and senescent cells; however, in senescent cells, but not proliferating cells, H4K20me3 enrichment at gene bodies correlates inversely with gene expression, reflecting de novo accumulation of H4K20me3 at repressed genes in senescent cells, including at genes also repressed in proliferating cells. Although elevated SUV420H2 upregulates H4K20me3, this does not accelerate senescence of primary human cells. However, elevated SUV420H2/H4K20me3 reinforces oncogene-induced senescence-associated proliferation arrest and slows tumorigenesis in vivo. CONCLUSIONS: These results corroborate a role for chromatin in underpinning the senescence phenotype but do not support a major role for H4K20me3 in initiation of senescence. Rather, we speculate that H4K20me3 plays a role in heterochromatinization and stabilization of the epigenome and genome of pre-malignant, oncogene-expressing senescent cells, thereby suppressing epigenetic and genetic instability and contributing to long-term senescence-mediated tumor suppression.


Asunto(s)
Carcinogénesis/genética , Senescencia Celular/genética , Cromatina/genética , N-Metiltransferasa de Histona-Lisina/genética , Línea Celular Tumoral , Proliferación Celular/genética , Metilación de ADN/genética , Epigénesis Genética/genética , Regulación Neoplásica de la Expresión Génica/genética , Heterocromatina/genética , Histonas/genética , Humanos , Nevo/metabolismo , Nevo/patología
6.
Dev Biol ; 384(1): 141-53, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24063805

RESUMEN

Planarian adult stem cells (pASCs) or neoblasts represent an ideal system to study the evolution of stem cells and pluripotency as they underpin an unrivaled capacity for regeneration. We wish to understand the control of differentiation and pluripotency in pASCs and to understand how conserved, convergent or divergent these mechanisms are across the Bilateria. Here we show the planarian methyl-CpG Binding Domain 2/3 (mbd2/3) gene is required for pASC differentiation during regeneration and tissue homeostasis. The genome does not have detectable levels of 5-methylcytosine (5(m)C) and we find no role for a potential DNA methylase. We conclude that MBD proteins may have had an ancient role in broadly controlling animal stem cell pluripotency, but that DNA methylation is not involved in planarian stem cell differentiation.


Asunto(s)
Planarias/genética , Células Madre Pluripotentes/citología , 5-Metilcitosina/metabolismo , Animales , Diferenciación Celular , Metilación de ADN , Planarias/metabolismo , Células Madre Pluripotentes/metabolismo
7.
Genome Biol ; 13(3): R19, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22439894

RESUMEN

BACKGROUND: Planarian stem cells, or neoblasts, drive the almost unlimited regeneration capacities of freshwater planarians. Neoblasts are traditionally described by their morphological features and by the fact that they are the only proliferative cell type in asexual planarians. Therefore, they can be specifically eliminated by irradiation. Irradiation, however, is likely to induce transcriptome-wide changes in gene expression that are not associated with neoblast ablation. This has affected the accurate description of their specific transcriptomic profile. RESULTS: We introduce the use of Smed-histone-2B RNA interference (RNAi) for genetic ablation of neoblast cells in Schmidtea mediterranea as an alternative to irradiation. We characterize the rapid, neoblast-specific phenotype induced by Smed-histone-2B RNAi, resulting in neoblast ablation. We compare and triangulate RNA-seq data after using both irradiation and Smed-histone-2B RNAi over a time course as means of neoblast ablation. Our analyses show that Smed-histone-2B RNAi eliminates neoblast gene expression with high specificity and discrimination from gene expression in other cellular compartments. We compile a high confidence list of genes downregulated by both irradiation and Smed-histone-2B RNAi and validate their expression in neoblast cells. Lastly, we analyze the overall expression profile of neoblast cells. CONCLUSIONS: Our list of neoblast genes parallels their morphological features and is highly enriched for nuclear components, chromatin remodeling factors, RNA splicing factors, RNA granule components and the machinery of cell division. Our data reveal that the regulation of planarian stem cells relies on posttranscriptional regulatory mechanisms and suggest that planarians are an ideal model for this understudied aspect of stem cell biology.


Asunto(s)
Histonas/genética , Planarias/genética , Células Madre Pluripotentes/metabolismo , Interferencia de ARN , ARN Mensajero/genética , Transcriptoma/genética , Animales , División Celular/genética , División Celular/efectos de la radiación , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/efectos de la radiación , Rayos gamma , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Histonas/metabolismo , Mar Mediterráneo , Análisis de Secuencia por Matrices de Oligonucleótidos , Planarias/crecimiento & desarrollo , Planarias/efectos de la radiación , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/efectos de la radiación , ARN Mensajero/antagonistas & inhibidores
8.
Proc Natl Acad Sci U S A ; 109(11): 4209-14, 2012 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-22371573

RESUMEN

In most sexually reproducing animals, replication and maintenance of telomeres occurs in the germ line and during early development in embryogenesis through the use of telomerase. Somatic cells generally do not maintain telomere sequences, and these cells become senescent in adults as telomeres shorten to a critical length. Some animals reproduce clonally and must therefore require adult somatic mechanisms for maintaining their chromosome ends. Here we study the telomere biology of planarian flatworms with apparently limitless regenerative capacity fueled by a population of highly proliferative adult stem cells. We show that somatic telomere maintenance is different in asexual and sexual animals. Asexual animals maintain telomere length somatically during reproduction by fission or when regeneration is induced by amputation, whereas sexual animals only achieve telomere elongation through sexual reproduction. We demonstrate that this difference is reflected in the expression and alternate splicing of the protein subunit of the telomerase enzyme. Asexual adult planarian stem cells appear to maintain telomere length over evolutionary timescales without passage through a germ-line stage. The adaptations we observe demonstrate indefinite somatic telomerase activity in proliferating stem cells during regeneration or reproduction by fission, and establish planarians as a pertinent model for studying telomere structure, function, and maintenance.


Asunto(s)
Regulación de la Expresión Génica , Planarias/enzimología , Planarias/genética , Reproducción Asexuada/genética , Telomerasa/metabolismo , Homeostasis del Telómero/genética , Telómero/metabolismo , Empalme Alternativo/genética , Animales , Células Germinativas/metabolismo , Hibridación in Situ , Datos de Secuencia Molecular , Planarias/crecimiento & desarrollo , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regeneración/genética , Células Madre/citología , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...