Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38399166

RESUMEN

In vitro testing is the first important step in the development of new biomaterials. The human fetal osteoblast cell line hFOB 1.19 is a very promising cell model; however, there are vast discrepancies in cultivation protocols, especially in the cultivation temperature and the presence of the selection reagent, geneticin (G418). We intended to use hFOB 1.19 for the testing of Zn-based degradable metallic materials. However, the sensitivity of hFOB 1.19 to zinc ions has not yet been studied. Therefore, we compared the toxicity of zinc towards hFOB 1.19 under different conditions and compared it with that of the L929 mouse fibroblast cell line. We also tested the cytotoxicity of three types of Zn-based biomaterials in two types of media. The presence of G418 used as a selection reagent decreased the sensitivity of hFOB 1.19 to Zn2+. hFOB 1.19 cell line was more sensitive to Zn2+ at elevated (restrictive) temperatures. hFOB 1.19 cell line was less sensitive to Zn2+ than L929 cell line (both as ZnCl2 and extracts of alloys). Therefore, the appropriate cultivation conditions of hFOB 1.19 during biomaterial testing should be chosen with caution.

2.
Sci Rep ; 13(1): 18536, 2023 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-37898679

RESUMEN

Lilial (also called lysmeral) is a fragrance ingredient presented in many everyday cosmetics and household products. The concentrations of lilial in the final products is rather low. Its maximum concentration in cosmetics was limited and recently, its use in cosmetics products was prohibited in the EU due to the classification as reproductive toxicant. Additionally, according to the European Chemicals Agency, it was under assessment as one of the potential endocrine disruptors, i.e. a substance that may alter the function of the endocrine system and, as a result, cause health problems. Its ability to act as an androgen receptor agonist and the estrogenic and androgenic activity of its metabolites, to the best of our knowledge, have not yet been tested. The aim of this work was to determine the intestinal absorption, cytotoxicity, nephrotoxicity, mutagenicity, activation of cellular stress-related signal pathways and, most importantly, to test the ability to disrupt the endocrine system of lilial and its Phase I metabolites. This was tested using set of in vitro assays including resazurin assay, the CHO/HPRT mutation assay, γH2AX biomarker-based genotoxicity assay, qPCR and in vitro reporter assays based on luminescence of luciferase for estrogen, androgen, NF-κB and NRF2 signalling pathway. It was determined that neither lilial nor its metabolites have a negative effect on cell viability in the concentration range from 1 nM to 100 µM. Using human cell lines HeLa9903 and MDA-kb2, it was verified that this substance did not have agonistic activity towards estrogen or androgen receptor, respectively. Lilial metabolites, generated by incubation with the rat liver S9 fraction, did not show the ability to bind to estrogen or androgen receptors. Neither lilial nor its metabolites showed a nephrotoxic effect on human renal tubular cells (RPTEC/TERT1 line) and at the same time they were unable to activate the NF-κB and NRF2 signalling pathway at a concentration of 50 µM (HEK 293/pGL4.32 or pGL4.37). Neither lilial nor its metabolites showed mutagenic activity in the HPRT gene mutation test in CHO-K1 cells, nor were they able to cause double-strand breaks in DNA (γH2AX biomarker) in CHO-K1 and HeLa cells. In our study, no negative effects of lilial or its in vitro metabolites were observed up to 100 µM using different in vitro tests.


Asunto(s)
Hipoxantina Fosforribosiltransferasa , FN-kappa B , Humanos , Ratas , Animales , Células HeLa , Células HEK293 , Factor 2 Relacionado con NF-E2 , Estrógenos/toxicidad , Estrógenos/metabolismo , Andrógenos , Biomarcadores
3.
Toxins (Basel) ; 15(4)2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-37104201

RESUMEN

(1) Background: The detection of DNA double-strand breaks in vitro using the phosphorylated histone biomarker (γH2AX) is an increasingly popular method of measuring in vitro genotoxicity, as it is sensitive, specific and suitable for high-throughput analysis. The γH2AX response is either detected by flow cytometry or microscopy, the latter being more accessible. However, authors sparsely publish details, data, and workflows from overall fluorescence intensity quantification, which hinders the reproducibility. (2) Methods: We used valinomycin as a model genotoxin, two cell lines (HeLa and CHO-K1) and a commercial kit for γH2AX immunofluorescence detection. Bioimage analysis was performed using the open-source software ImageJ. Mean fluorescent values were measured using segmented nuclei from the DAPI channel and the results were expressed as the area-scaled relative fold change in γH2AX fluorescence over the control. Cytotoxicity is expressed as the relative area of the nuclei. We present the workflows, data, and scripts on GitHub. (3) Results: The outputs obtained by an introduced method are in accordance with expected results, i.e., valinomycin was genotoxic and cytotoxic to both cell lines used after 24 h of incubation. (4) Conclusions: The overall fluorescence intensity of γH2AX obtained from bioimage analysis appears to be a promising alternative to flow cytometry. Workflow, data, and script sharing are crucial for further improvement of the bioimage analysis methods.


Asunto(s)
Daño del ADN , Microscopía , Humanos , Proyectos Piloto , Valinomicina/toxicidad , Reproducibilidad de los Resultados , Células HeLa , Biomarcadores/análisis
4.
Materials (Basel) ; 15(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36363162

RESUMEN

In the field of magnesium-based degradable implantable devices, the Mg-Y-RE-Zr alloying system (WE-type) has gained popularity due to its satisfying degradation rate together with mechanical strength. However, utilization of RE and Zr in the WE-type alloys was originally driven to improve Mg-based alloys for high-temperature applications in the industry, while for medical purposes, there is a question of whether the amount of alloying elements may be further optimized. For this reason, our paper presents the Mg-3Y (W3) magnesium alloy as an alternative to the WE43 alloy. This study shows that the omission of RE and Zr elements did not compromise the corrosion resistance and the degradation rate of the W3 alloy when compared with the WE43 alloy; appropriate biocompatibility was preserved as well. It was shown that the decrease in the mechanical strength caused by the omission of RE and Zr from the WE43 alloy could be compensated for by severe plastic deformation, as achieved in this study, by equal channel angular pressing. Ultrafine-grained W3 alloy exhibited compression yield strength of 362 ± 6 MPa and plastic deformation at maximum stress of 18 ± 1%. Overall, the early results of this study put forward the motion of avoiding RE elements and Zr in magnesium alloy as a suitable material for biodegradable applications and showed that solo alloying of yttrium is sufficient for maintaining desirable properties of the material at once.

5.
J Biomed Mater Res B Appl Biomater ; 110(1): 115-124, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34137161

RESUMEN

This research work is focused on the investigation of newly developed titania sol-gel coatings containing silver, calcium and phosphate with appropriate abilities to be implanted into the human body. These abilities include adhesion, bioactivity, antibacterial property and cytocompatibility of prepared coatings. Four types of coatings were applied on a titanium substrate by dip-coating technique under different conditions (TCP1, TCP2, TCPA1 and TCPA2). Surfaces of coatings after the firing without silver featured different distribution of circular areas containing Ca. The coatings TCPA1 and TCPA2 were made up of unhomogeneously situated silver. Adhesion of the coatings to the substrates was measured by a tape test. All types of the coatings demonstrated very good adhesion. Isolated cracks that appeared during the firing did not have a negative influence on the adhesion properties. Bioactivity of the coatings was tested in vitro using a simulated body fluid. Three of the four types demonstrated bioactive properties (TCP1, TCP2 and TCPA2), that is, precipitation of crystalline hydroxyapatite as was confirmed by X-ray diffraction. The antibacterial effect (against Escherichia coli and Staphylococcus epidermidis) and cytotoxicity (toward L929 and U-2 OS cell lines, direct and indirect test) were then tested. All the coatings demonstrated very good antibacterial effect against both bacteria after 4- and 24-hr interaction. All the coating types were evaluated as cytocompatible in the indirect test. Cells were able to grow even directly on the coatings.


Asunto(s)
Plata , Titanio , Antibacterianos/química , Antibacterianos/farmacología , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Durapatita/farmacología , Escherichia coli , Humanos , Plata/farmacología , Titanio/química , Titanio/farmacología
6.
Sci Rep ; 11(1): 6628, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33758226

RESUMEN

In vitro cytotoxicity testing is an indispensable part of the development of new biomaterials. However, the standard ISO 10993-5 enables variability in the testing conditions, which makes the results of the test incomparable. We studied the influence of media composition on the results of the cytotoxicity test. Solutions of ZnCl2 served as simulated extracts and we also used extracts of three types of Zn-based and Mg-based degradable metals. We incubated the cells with the solutions prepared in two types of media with two concentrations of serum (5 and 10%). We compared the toxic effect of the extracts on L929 murine fibroblast-derived cell line, which is recommended by ISO standard and on "osteoblast-like cells" U-2 OS. We also compared two methods of exposition: solutions were added either to a sub-confluent layer or to the cell suspension. We evaluated the metabolic activity of the cells using the resazurin test. We found out that in vitro cytotoxicity is dramatically influenced by the concentration of serum and by the type of the medium as well as by the type of exposition and type of cells. Therefore, when performing in vitro cytotoxicity testing of biomaterials, the authors should carefully specify the conditions of the test and comparison of different studies should be carried out with caution.


Asunto(s)
Materiales Biocompatibles/farmacología , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/farmacología , Aleaciones , Animales , Células Cultivadas , Técnicas In Vitro , Ensayo de Materiales , Ratones
7.
Materials (Basel) ; 13(24)2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33316967

RESUMEN

Titanium and its alloys belong to the group of materials used in implantology due to their biocompatibility, outstanding corrosion resistance and good mechanical properties. However, the value of Young's modulus is too high in comparison with the human bone, which could result in the failure of implants. This problem can be overcome by creating pores in the materials, which, moreover, improves the osseointegration. Therefore, TiSi2 and TiSi2 with 20 wt.% of the pore-forming agent (PA) were prepared by reactive sintering and compared with pure titanium and titanium with the addition of various PA content in this study. For manufacturing implants (especially augmentation or spinal replacements), titanium with PA seemed to be more suitable than TiSi2 + 20 wt.% PA. In addition, titanium with 30 or 40 wt.% PA contained pores with a size allowing bone tissue ingrowth. Furthermore, Ti + 30 wt.% PA was more suitable material in terms of corrosion resistance; however, its Young's modulus was higher than that of the human bone while Ti + 40 wt.% PA had a Young's modulus close to the human bone.

8.
J Mater Chem B ; 8(48): 10941-10953, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33169773

RESUMEN

Bioactive glasses are used to regenerate bone by a mechanism which involves surface degradation, the release of ions such as calcium, soluble silica and phosphate and the precipitation of a biomimetic apatite surface layer on the glass. One major area of bioactive glass research is the incorporation of therapeutically active ions to broaden the application range of these materials. When developing such new compositions, in vitro cell culture studies are a key part of their characterisation. However, parameters of cell culture studies vary widely, and depending on the intended use of bioactive glass compositions, different layouts, cell types and assays need to be used. The aim of this publication is to provide materials scientists, particularly those new to cell culture studies, with a tool for selecting the most appropriate assays to give insight into the properties of interest.


Asunto(s)
Materiales Biocompatibles/síntesis química , Regeneración Ósea/efectos de los fármacos , Técnicas de Cultivo de Célula/métodos , Supervivencia Celular/efectos de los fármacos , Cerámica/síntesis química , Ensayo de Materiales/métodos , Animales , Materiales Biocompatibles/farmacología , Regeneración Ósea/fisiología , Línea Celular , Supervivencia Celular/fisiología , Cerámica/farmacología , Vidrio , Humanos
9.
ACS Nano ; 14(7): 8247-8256, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32544324

RESUMEN

The actuation of micro/nanomachines by means of a magnetic field is a promising fuel-free way to transport cargo in microscale dimensions. This type of movement has been extensively studied for a variety of micro/nanomachine designs, and a special magnetic field configuration results in a near-surface walking. We developed "walking" micromachines which transversally move in a magnetic field, and we used them as microrobotic scalpels to enter and exit an individual cancer cell and cut a small cellular fragment. In these microscalpels, the center of mass lies approximately in the middle of their length. The microrobotic scalpels show good propulsion efficiency and high step-out frequencies of the magnetic field. Au/Ag/Ni microrobotic scalpels controlled by a transversal rotating magnetic field can enter the cytoplasm of cancer cells and also are able to remove a piece of the cytosol while leaving the cytoplasmic membrane intact in a microsurgery-like manner. We believe that this concept can be further developed for potential biological or medical applications.

10.
Bioelectrochemistry ; 127: 26-34, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30654242

RESUMEN

Titanium biomaterials are widely used in the medical field due to their biocompatibility and excellent corrosion and mechanical resistance. However, these materials have no antibacterial properties. To obtain an antibacterial active surface, a nanostructure of Ti6Al4V alloy was created. This specific nanostructure contained nanotubes and micro-cavities and was used as a substrate for silver anchoring. The electrochemical approach to silver reduction was studied. It is a common approach for silver deposition and in this work, inhomogeneities in the nanostructure were used as a preferential area for silver localisation. The galvanostatic regimen of deposition allowed for a technically quantitative process and the required silver placement. The experimental conditions used enabled testing and silver dissolution rate evaluation within a reasonable time span. Based on the corrosion and analytical results (EDS, XPS and ICP-MS), a two-phase silver release mechanism was confirmed. The openings of the individual nanotubes were filled with silver nanoparticles, whose release was relatively fast. By contrast, the silver anchored inside the cavities allowed the silver to release gradually. Antibacterial efficiency against Staphylococcus aureus and Escherichia coli was successfully demonstrated. Cytotoxicity testing with murine fibroblasts showed cell metabolic activity far above the normative limit of 70%.


Asunto(s)
Antibacterianos/administración & dosificación , Materiales Biocompatibles/química , Nanoestructuras/química , Plata/administración & dosificación , Titanio/química , Aleaciones , Animales , Antibacterianos/química , Antibacterianos/farmacología , Línea Celular , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Escherichia coli/efectos de los fármacos , Infecciones por Escherichia coli/tratamiento farmacológico , Humanos , Ratones , Prótesis e Implantes , Plata/química , Plata/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos
11.
Mater Sci Eng C Mater Biol Appl ; 93: 911-920, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30274128

RESUMEN

3D printing seems to be the technology of the future for the preparation of metallic implants. For such applications, corrosion behaviour is pivotal. However, little is published on this topic and with inconsistent results. Therefore, we carried out a complex study in which we compared two techniques of the 3D printing technology - selective laser melting and electron beam melting. The corrosion behaviour was studied in physiological solution by standard electrochemical techniques and susceptibility to localised corrosion was estimated too. All samples showed typical passive behaviour. Localised corrosion was shown to be possible on the original as-printed surfaces. Corrosion experiments were repeated tree times. To reveal possible negative effects of 3D printing on cytocompatibility, direct in vitro tests were performed with U-2 OS cells. The cells showed good viability and proliferation, but their growth was impeded by surface unevenness. Our results suggest that both techniques are suitable for implants production. Statistical evaluation was performed by ANOVA followed by Tukey's test.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Ensayo de Materiales , Impresión Tridimensional , Titanio , Aleaciones , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Corrosión , Humanos , Titanio/química , Titanio/farmacología
12.
Materials (Basel) ; 10(9)2017 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-28837101

RESUMEN

Thermal plasma spray is a common, well-established technology used in various application fields. Nevertheless, in our work, this technology was employed in a completely new way; for the preparation of bulk titanium. The aim was to produce titanium with properties similar to human bone to be used for bone augmentations. Titanium rods sprayed on a thin substrate wire exerted a porosity of about 15%, which yielded a significant decrease of Young's modulus to the bone range and provided rugged topography for enhanced biological fixation. For the first verification of the suitability of the selected approach, tests of the mechanical properties in terms of compression, bending, and impact were carried out, the surface was characterized, and its compatibility with bone cells was studied. While preserving a high enough compressive strength of 628 MPa, the elastic modulus reached 11.6 GPa, thus preventing a stress-shielding effect, a generally known problem of implantable metals. U-2 OS and Saos-2 cells derived from bone osteosarcoma grown on the plasma-sprayed surface showed good viability.

13.
Mater Sci Eng C Mater Biol Appl ; 79: 550-562, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28629053

RESUMEN

Recently, iron-based materials have been considered as candidates for the fabrication of biodegradable load-bearing implants. Alloying with palladium has been found to be a suitable approach to enhance the insufficient corrosion rate of iron-based alloys. In this work, we have extensively compared the microstructure, the mechanical and corrosion properties, and the cytotoxicity of an FePd2 (wt%) alloy prepared by three different routes - casting, mechanical alloying and spark plasma sintering (SPS), and mechanical alloying and the space holder technique (SHT). The properties of the FePd2 (wt%) were compared with pure Fe prepared in the same processes. The preparation route significantly influenced the material properties. Materials prepared by SPS possessed the highest values of mechanical properties (CYS~750-850MPa) and higher corrosion rates than the casted materials. Materials prepared by SHT contained approximately 60% porosity; therefore, their mechanical properties reached the lowest values, and they had the highest corrosion rates, approximately 0.7-1.2mm/a. Highly porous FePd2 was tested in vitro according to the ISO 10993-5 standard using L929 cells, and two-fold diluted extracts showed acceptable cytocompatibility. In general, alloying with Pd enhanced both mechanical properties and corrosion rates and did not decrease the cytocompatibility of the studied materials.


Asunto(s)
Aleaciones/química , Materiales Biocompatibles , Corrosión , Hierro , Plomo , Ensayo de Materiales , Soporte de Peso
14.
Mater Sci Eng C Mater Biol Appl ; 76: 25-30, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28482525

RESUMEN

New materials with appropriate mechanical properties and an antibacterial effect are constantly being sought for orthopedic and dental applications. The aim of this study was to investigate newly developed TiSi alloys coated with titania sol-gel containing silver. Titanium alloys with 5 or 10wt% of silicon were prepared by vacuum arc remelting and dip-coated with titania sol containing either AgNO3 or Ag3PO4 in two concentrations. The size and distribution of the particles in the layer were evaluated, as well as layer compactness (SEM). The antibacterial effect (against E. coli and S. epidermidis) and cytotoxicity (towards L929 and U-2 OS cell lines) of these materials were then tested. Despite cracking of the coatings after firing, the coatings demonstrated very good antibacterial effects against both E. coli and S. epidermidis after 24h of interaction. None of the tested materials were toxic to both cell lines. Collectively, our results suggest that these materials are promising candidates for orthopedic applications.


Asunto(s)
Antibacterianos/química , Aleaciones , Materiales Biocompatibles Revestidos , Escherichia coli , Transición de Fase , Silicatos , Plata , Titanio
15.
Mater Sci Eng C Mater Biol Appl ; 73: 736-742, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28183668

RESUMEN

Effect of processing by equal channel angular pressing (ECAP) on the degradation behaviour of extruded LAE442 magnesium alloy was investigated in a 0.1M NaCl solution, Kirkland's biocorrosion medium (KBM) and Minimum Essential Medium (MEM), both with and without 10% of foetal bovine serum (FBS). Uniform degradation of as extruded and ECAP processed samples in NaCl solution was observed, nevertheless higher corrosion resistance was found in the latter material. The increase of corrosion resistance due to ECAP was observed also after 14-days immersion in all media used. Higher compactness of the corrosion layer formed on the samples after ECAP was responsible for the observed decrease of corrosion resistance, which was proven by scanning electron microscope investigation. Lower corrosion rate in media with FBS was observed and was explained by additional effect of protein incorporation on the corrosion layer stability. A cytotoxicity test using L929 cells was carried out to investigate possible effect of processing on the cell viability. Sufficient cytocompatibility of the extruded samples was observed with no adverse effects of the subsequent ECAP processing. In conclusion, this in vitro study proved that the degradation behaviour of the LAE442 alloy could be improved by subsequent ECAP processing and this material is a good candidate for future in vivo investigation.


Asunto(s)
Aleaciones/química , Magnesio/química , Ensayo de Materiales/métodos , Animales , Muerte Celular/efectos de los fármacos , Línea Celular , Corrosión , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Hidrógeno/análisis , Iones , Ratones , Cloruro de Sodio/farmacología , Soluciones
16.
J Mech Behav Biomed Mater ; 69: 368-376, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28167428

RESUMEN

Porous structures, manufactured of a biocompatible metal, mimicking human bone structure are the future of orthopedic implantology. Fully porous materials, however, suffer from certain drawbacks. To overcome these, gradient in structure can be prepared. With gradient in porosity mechanical properties can be optimized to an appropriate value, implant can be attributed a similar gradient macrostructure as bone, tissue adhesion may be promoted and also various modification with organic or inorganic substances are possible. In this study, additive technology selective laser melting (SLM) was used to produce three types of gradient porosity model specimens of titanium alloy Ti-6Al-4V. As this technology has the potential to prepare complex structures in the near-net form, to control porosity, pore size and shape, it represents a promising option. The first part of the research work was focused on the characterization of the material itself in the as-produced state, only with heat treatment applied. The second part dealt with the influence of porosity on mechanical properties. The study has shown SLM brings significant changes in the surface chemistry. Despite this finding, titanium alloy retained its cytocompatibility, as it was outlined by in vitro tests with U-2 OS cells. With introduced porosity yield strength, ultimate strength and stiffness showed linear decrease, both in tension and compression. With respect to the future use in the form of orthopedic implant, especially reduction in Young's modulus down to the human bone value (30.5±2GPa) is very appreciated as the stress-shielding effect followed by possible implant loosening is limited.


Asunto(s)
Materiales Biocompatibles/análisis , Ensayo de Materiales , Porosidad , Titanio/análisis , Aleaciones , Módulo de Elasticidad , Humanos , Rayos Láser , Propiedades de Superficie
17.
Mater Sci Eng C Mater Biol Appl ; 69: 631-9, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27612756

RESUMEN

Recently, porous metallic materials have been extensively studied as candidates for use in the fabrication of scaffolds and augmentations to repair trabecular bone defects, e.g. in surroundings of joint replacements. Fabricating these complex structures by using common approaches (e.g., casting and machining) is very challenging. Therefore, rapid prototyping techniques, such as selective laser melting (SLM), have been investigated for these applications. In this study, we characterized a highly porous (87 vol.%) 316L stainless steel scaffold prepared by SLM. 316L steel was chosen because it presents a biomaterial still widely used for fabrication of joint replacements and, from the practical point of view, use of the same material for fabrication of an augmentation and a joint replacement is beneficial for corrosion prevention. The results are compared to the reported properties of two representative nonporous 316L stainless steels prepared either by SLM or casting and subsequent hot forging. The microstructural and mechanical properties and the surface chemical composition and interaction with the cells were investigated. The studied material exhibited mechanical properties that were similar to those of trabecular bone (compressive modulus of elasticity ~0.15GPa, compressive yield strength ~3MPa) and cytocompatibility after one day that was similar to that of wrought 316L stainless steel, which is a commonly used biomaterial. Based on the obtained results, SLM is a suitable method for the fabrication of porous 316L stainless steel scaffolds with highly porous structures.


Asunto(s)
Módulo de Elasticidad/efectos de los fármacos , Hierro/farmacología , Rayos Láser , Ensayo de Materiales/métodos , Acero Inoxidable/farmacología , Línea Celular Tumoral , Forma de la Célula , Humanos , Espectroscopía de Fotoelectrones , Porosidad , Propiedades de Superficie , Resistencia a la Tracción/efectos de los fármacos
18.
Mater Sci Eng C Mater Biol Appl ; 68: 198-204, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27524013

RESUMEN

Degradable zinc-based alloys with an appropriate corrosion rate are promising materials for the preparation of temporary orthopaedic implants. Previously, we prepared and characterised a novel Zn1.5Mg alloy. This paper is focused on the characterisation of this alloy after a surface pre-treatment, which should mimic processes occurring in vivo. The samples of the Zn1.5Mg alloy were immersed in a simulated body fluid (SBF) at 37°C for 14days in order to form a protective layer of corrosion products. Thereafter, these samples were used for the corrosion rate determination, an indirect in vitro cytotoxicity test, as well as for a direct contact test and were compared with the non-treated samples. The protective layer was characterized by SEM and its chemical composition was determined by EDS and XPS analysis. The corrosion rate was significantly decreased after the pre-incubation. The protective layer of corrosion products was rich in Ca and P. The pre-incubated samples exhibited increased cytocompatibility in the indirect test (metabolic activity of L929 cells was above 70%) and we also observed osteoblast-like cell growth directly on the samples during the contact tests. Thus, the pre-incubation in SBF leading to improved cytocompatibility could represent more appropriate model to in vivo testing.


Asunto(s)
Implantes Absorbibles , Aleaciones , Magnesio , Ensayo de Materiales , Osteoblastos/metabolismo , Zinc , Aleaciones/química , Aleaciones/farmacología , Animales , Líquidos Corporales/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Corrosión , Magnesio/química , Magnesio/farmacología , Ratones , Osteoblastos/citología , Zinc/química , Zinc/farmacología
19.
Mater Sci Eng C Mater Biol Appl ; 58: 900-8, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26478385

RESUMEN

An interest in biodegradable metallic materials has been increasing in the last two decades. Besides magnesium based materials, iron-manganese alloys have been considered as possible candidates for fabrication of biodegradable stents and orthopedic implants. In this study, we prepared a hot forged FeMn30 (wt.%) alloy and investigated its microstructural, mechanical and corrosion characteristics as well as cytotoxicity towards mouse L 929 fibroblasts. The obtained results were compared with those of iron. The FeMn30 alloy was composed of antiferromagnetic γ-austenite and ε-martensite phases and possessed better mechanical properties than iron and even that of 316 L steel. The potentiodynamic measurements in simulated body fluids showed that alloying with manganese lowered the free corrosion potential and enhanced the corrosion rate, compared to iron. On the other hand, the corrosion rate of FeMn30 obtained by a semi-static immersion test was significantly lower than that of iron, most likely due to a higher degree of alkalization in sample surrounding. The presence of manganese in the alloy slightly enhanced toxicity towards the L 929 cells; however, the toxicity did not exceed the allowed limit and FeMn30 alloy fulfilled the requirements of the ISO 10993-5 standard.


Asunto(s)
Materiales Biocompatibles/química , Hierro/química , Manganeso/química , Animales , Materiales Biocompatibles/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Fuerza Compresiva , Corrosión , Hierro/toxicidad , Manganeso/toxicidad , Ratones , Resistencia a la Tracción , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...