Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38115607

RESUMEN

Neutrophils, the most abundant white blood cells in the human circulation, play crucial roles in various diseases, including kidney disease. Traditionally viewed as short-lived pro-inflammatory phagocytes that release reactive oxygen species, cytokines and neutrophil extracellular traps, recent studies have revealed their complexity and heterogeneity, thereby challenging this perception. Neutrophils are now recognized as transcriptionally active cells capable of proliferation and reverse migration, displaying phenotypic and functional heterogeneity. They respond to a wide range of signals and deploy various cargo to influence the activity of other cells in the circulation and in tissues. They can regulate the behavior of multiple immune cell types, exhibit innate immune memory, and contribute to both acute and chronic inflammatory responses while also promoting inflammation resolution in a context-dependent manner. Here, we explore the origin and heterogeneity of neutrophils, their functional diversity, and the cues that regulate their effector functions. We also examine their emerging role in infectious and non-infectious diseases with a particular emphasis on kidney disease. Understanding the complex behavior of neutrophils during tissue injury and inflammation may provide novel insights, thereby paving the way for potential therapeutic strategies to manage acute and chronic conditions. By deciphering their multifaceted role, targeted interventions can be developed to address the intricacies of neutrophil-mediated immune responses and improve disease outcomes.

3.
Front Immunol ; 14: 1227191, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37790937

RESUMEN

Introduction: Streptococcus pneumoniae is one of the main causes of community-acquired infections in the lung alveoli in children and the elderly. Alveolar macrophages (AM) patrol alveoli in homeostasis and under infectious conditions. However, the molecular adaptations of AM upon infections with Streptococcus pneumoniae are incompletely resolved. Methods: We used a comparative transcriptomic and proteomic approach to provide novel insights into the cellular mechanism that changes the molecular signature of AM during lung infections. Using a tandem mass spectrometry approach to murine cell-sorted AM, we revealed significant proteomic changes upon lung infection with Streptococcus pneumoniae. Results: AM showed a strong neutrophil-associated proteomic signature, such as expression of CD11b, MPO, neutrophil gelatinases, and elastases, which was associated with phagocytosis of recruited neutrophils. Transcriptomic analysis indicated intrinsic expression of CD11b by AM. Moreover, comparative transcriptomic and proteomic profiling identified CD11b as the central molecular hub in AM, which influenced neutrophil recruitment, activation, and migration. Discussion: In conclusion, our study provides novel insights into the intrinsic molecular adaptations of AM upon lung infection with Streptococcus pneumoniae and reveals profound alterations critical for effective antimicrobial immunity.


Asunto(s)
Antígeno CD11b , Neumonía Neumocócica , Animales , Ratones , Integrinas , Pulmón , Macrófagos Alveolares , Proteómica , Streptococcus pneumoniae , Transcriptoma
4.
Life (Basel) ; 13(10)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37895415

RESUMEN

The development of therapy resistance still represents a major hurdle in treating cancers, leading to impaired treatment success and increased patient morbidity. The establishment of minimally invasive liquid biopsies is a promising approach to improving the early diagnosis, as well as therapy monitoring, of solid tumors. Because of their manifold functions in the tumor microenvironment, tumor-associated small extracellular vesicles, referred to as exosomes, have become a subject of intense research. Besides their important roles in cancer progression, metastasis, and the immune response, it has been proposed that exosomes also contribute to the acquisition and transfer of therapy resistance, mainly by delivering functional proteins and RNAs, as well as facilitating the export of active drugs or functioning as extracellular decoys. Extensive research has focused on understanding the molecular mechanisms underlying the occurrence of resistance and translating these into strategies for early detection. With this review, we want to provide an overview of the current knowledge about the (patho-)biology of exosomes, as well as state-of-the-art methods of isolation and analysis. Furthermore, we highlight the role of exosomes in tumorigenesis and cancer treatment, where they can function as therapeutic agents, biomarkers, and/or targets. By focusing on their roles in therapy resistance, we will reveal new paths of exploiting exosomes for cancer diagnosis and treatment.

5.
J Leukoc Biol ; 114(6): 639-650, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-37555392

RESUMEN

The transforming growth factor ß (TGF-ß)/ALK1/ENG signaling pathway maintains quiescent state of endothelial cells, but at the same time, it regulates neutrophil functions. Importantly, mutations of this pathway lead to a rare autosomal disorder called hereditary hemorrhagic telangiectasia (HHT), characterized with abnormal blood vessel formation (angiogenesis). As neutrophils are potent regulators of angiogenesis, we investigated how disturbed TGF-ß/ALK1/ENG signaling influences angiogenic properties of these cells in HHT. We could show for the first time that not only endothelial cells, but also neutrophils isolated from such patients are ENG/ALK1 deficient. This deficiency obviously stimulates proangiogenic switch of such neutrophils. Elevated proangiogenic activity of HHT neutrophils is mediated by the increased spontaneous degranulation of gelatinase granules, resulting in high release of matrix-degrading matrix metalloproteinase 9 (MMP9). In agreement, therapeutic disturbance of this process using Src tyrosine kinase inhibitors impaired proangiogenic capacity of such neutrophils. Similarly, inhibition of MMP9 activity resulted in significant impairment of neutrophil-mediated angiogenesis. All in all, deficiency in TGF-ß/ALK1/ENG signaling in HHT neutrophils results in their proangiogenic activation and disease progression. Therapeutic strategies targeting neutrophil degranulation and MMP9 release and activity may serve as a potential therapeutic option for HHT.


Asunto(s)
Telangiectasia Hemorrágica Hereditaria , Humanos , Telangiectasia Hemorrágica Hereditaria/tratamiento farmacológico , Telangiectasia Hemorrágica Hereditaria/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/uso terapéutico , Neutrófilos/metabolismo , Endoglina/genética , Endoglina/metabolismo , Células Endoteliales/metabolismo , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Receptores de Activinas Tipo II/uso terapéutico , Factor de Crecimiento Transformador beta , Transducción de Señal/genética
6.
Mol Med ; 29(1): 69, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37226100

RESUMEN

BACKGROUND: In Head and neck cancer (HNC) angiogenesis is essential for tumor progression and metastasis. Small extracellular vesicles (sEVs) from HNC cell lines alter endothelial cell (EC) functions towards a pro-angiogenic phenotype. However, the role of plasma sEVs retrieved from HNC patients in this process is not clear so far. METHODS: Plasma sEVs were isolated on size exclusion chromatography columns from 32 HNC patients (early-stage UICC I/II: 8, advanced-stage UICC III/IV: 24), 12 patients with no evident disease after therapy (NED) and 16 healthy donors (HD). Briefly, sEVs were characterized by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), BCA protein assays and Western blots. Levels of angiogenesis-associated proteins were determined using antibody arrays. The interaction of fluorescently-labeled sEVs with human umbilical vein ECs was visualized by confocal microscopy. The functional effect of sEVs on tubulogenesis, migration, proliferation and apoptosis of ECs was assessed. RESULTS: The internalization of sEVs by ECs was visualized using confocal microscopy. Based on antibody arrays, all plasma sEVs were enriched in anti-angiogenic proteins. HNC sEVs contained more pro-angiogenic MMP-9 and anti-angiogenic proteins (Serpin F1) than HD sEVs. Interestingly, a strong inhibition of EC function was observed for sEVs from early-stage HNC, NED and HD. In contrast, sEVs from advanced-stage HNC showed a significantly increased tubulogenesis, migration and proliferation and induced less apoptosis in ECs than sEVs from HD. CONCLUSIONS: In general, plasma sEVs carry a predominantly anti-angiogenic protein cargo and suppress the angiogenic properties of ECs, while sEVs from (advanced-stage) HNC patients induce angiogenesis compared to HD sEVs. Thus, tumor-derived sEVs within the plasma of HNC patients might shift the angiogenic switch towards angiogenesis.


Asunto(s)
Vesículas Extracelulares , Neoplasias de Cabeza y Cuello , Humanos , Anticuerpos , Apoptosis , Western Blotting
7.
J Immunother Cancer ; 11(4)2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-37028818

RESUMEN

BACKGROUND: Immune responses against tumors are subject to negative feedback regulation. Immune checkpoint inhibitors (ICIs) blocking Programmed cell death protein 1 (PD-1), a receptor expressed on T cells, or its ligand PD-L1 have significantly improved the treatment of cancer, in particular malignant melanoma. Nevertheless, responses and durability are variables, suggesting that additional critical negative feedback mechanisms exist and need to be targeted to improve therapeutic efficacy. METHODS: We used different syngeneic melanoma mouse models and performed PD-1 blockade to identify novel mechanisms of negative immune regulation. Genetic gain-of-function and loss-of-function approaches as well as small molecule inhibitor applications were used for target validation in our melanoma models. We analyzed mouse melanoma tissues from treated and untreated mice by RNA-seq, immunofluorescence and flow cytometry to detect changes in pathway activities and immune cell composition of the tumor microenvironment. We analyzed tissue sections of patients with melanoma by immunohistochemistry as well as publicly available single-cell RNA-seq data and correlated target expression with clinical responses to ICIs. RESULTS: Here, we identified 11-beta-hydroxysteroid dehydrogenase-1 (HSD11B1), an enzyme that converts inert glucocorticoids into active forms in tissues, as negative feedback mechanism in response to T cell immunotherapies. Glucocorticoids are potent suppressors of immune responses. HSD11B1 was expressed in different cellular compartments of melanomas, most notably myeloid cells but also T cells and melanoma cells. Enforced expression of HSD11B1 in mouse melanomas limited the efficacy of PD-1 blockade, whereas small molecule HSD11B1 inhibitors improved responses in a CD8+ T cell-dependent manner. Mechanistically, HSD11B1 inhibition in combination with PD-1 blockade augmented the production of interferon-γ by T cells. Interferon pathway activation correlated with sensitivity to PD-1 blockade linked to anti-proliferative effects on melanoma cells. Furthermore, high levels of HSD11B1, predominantly expressed by tumor-associated macrophages, were associated with poor responses to ICI therapy in two independent cohorts of patients with advanced melanomas analyzed by different methods (scRNA-seq, immunohistochemistry). CONCLUSION: As HSD11B1 inhibitors are in the focus of drug development for metabolic diseases, our data suggest a drug repurposing strategy combining HSD11B1 inhibitors with ICIs to improve melanoma immunotherapy. Furthermore, our work also delineated potential caveats emphasizing the need for careful patient stratification.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1 , Glucocorticoides , Inmunoterapia , Melanoma , Animales , Ratones , Linfocitos T CD8-positivos , Glucocorticoides/uso terapéutico , Interferón gamma/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/patología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Microambiente Tumoral , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/antagonistas & inhibidores , Reposicionamiento de Medicamentos
8.
Front Immunol ; 13: 945409, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36148245

RESUMEN

Sepsis is associated with profound immune dysregulation that increases the risk for life-threatening secondary infections: Dendritic cells (DCs) undergo functional reprogramming due to yet unknown changes during differentiation in the bone marrow (BM). In parallel, lymphopenia and exhaustion of T lymphocytes interfere with antigen-specific adaptive immunity. We hypothesized that there exists a link between T cells and the modulation of DC differentiation in the BM during murine polymicrobial sepsis. Sepsis was induced by cecal ligation and puncture (CLP), a model for human bacterial sepsis. At different time points after CLP, the BM and spleen were analyzed in terms of T-cell subpopulations, activation, and Interferon (IFN)-γ synthesis as well as the number of pre-DCs. BM-derived DCs were generated in vitro. We observed that naïve and virtual memory CD8+ T cells, but not CD4+ T cells, were activated in an antigen-independent manner and accumulated in the BM early after CLP, whereas lymphopenia was evident in the spleen. The number of pre-DCs strongly declined during acute sepsis in the BM and almost recovered by day 4 after CLP, which required the presence of CD8+ T cells. Adoptive transfer experiments and in vitro studies with purified T cells revealed that Toll-like receptor 2 (TLR2) signaling in CD8+ T cells suppressed their capacity to secrete IFN-γ and was sufficient to change the transcriptome of the BM during sepsis. Moreover, the diminished IFN-γ production of CD8+ T cells favored the differentiation of DCs with increased production of the immune-activating cytokine Interleukin (IL)-12. These data identify a novel role of CD8+ T cells in the BM during sepsis as they sense TLR2 ligands and control the number and function of de novo differentiating DCs.


Asunto(s)
Linfopenia , Sepsis , Animales , Antígenos , Médula Ósea , Linfocitos T CD8-positivos , Diferenciación Celular , Citocinas , Células Dendríticas , Humanos , Interferón gamma , Interleucina-12 , Ratones , Receptor Toll-Like 2
9.
Cell Rep ; 40(7): 111171, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35977505

RESUMEN

Tumor-draining lymph nodes (LNs) play a crucial role during cancer spread and in initiation of anti-cancer adaptive immunity. Neutrophils form a substantial population of cells in LNs with poorly understood functions. Here, we demonstrate that, during head and neck cancer (HNC) progression, tumor-associated neutrophils transmigrate to LNs and shape anti-tumor responses in a stage-dependent manner. In metastasis-free stages (N0), neutrophils develop an antigen-presenting phenotype (HLA-DR+CD80+CD86+ICAM1+PD-L1-) and stimulate T cells (CD27+Ki67highPD-1-). LN metastases release GM-CSF and via STAT3 trigger development of PD-L1+ immunosuppressive neutrophils, which repress T cell responses. The accumulation of neutrophils in T cell-rich zones of LNs in N0 constitutes a positive predictor for 5-year survival, while increased numbers of neutrophils in LNs of N1-3 stages predict poor prognosis in HNC. These results suggest a dual role of neutrophils as essential regulators of anti-cancer immunity in LNs and argue for approaches fostering immunostimulatory activity of these cells during cancer therapy.


Asunto(s)
Antígeno B7-H1 , Neoplasias , Humanos , Inmunidad , Ganglios Linfáticos , Neoplasias/patología , Neutrófilos
10.
J Leukoc Biol ; 112(5): 949-950, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35946321

RESUMEN

PMN-MDSC are pathologically activated neutrophils that acquire T cell (and NK cell) suppressive activity and thus function as negative regulators of effector lymphocytes in many disease conditions.[1] For many years, these PMN-MDSC have mainly been seen as contributors to disease progression and severity, best exemplified in the context of cancer. However, more recently, PMN-MDSC have also been described in newborn mice and humans.[2] This finding raised the question on the potential functional roles of these regulatory myeloid cells in neonate immunobiology. During the first days (mice) or weeks (human) of life, an initial seeding of microbiota in the gut takes place. The appearance of these microbiota triggers immune responses that could potentially lead to harmful inflammation and immunopathology. In this early phase of life, PMN-MDSC could be beneficial by limiting overshooting immune responses. Indeed, a recent paper by He et al.[3] describes the transient presence of PMN-MDSC during the first month of life. Such PMN-MDSC have been shown to suppress T cells in a contact-depended manner, but the mechanism behind the transitory nature of this phenomenon has not yet been elucidated. In this issue of the Journal of Leukocyte Biology Perego et al. describe molecular mechanisms that regulate this transient increase and subsequent decrease of PMN-MDSC in newborn mice.[4].


Asunto(s)
Células Supresoras de Origen Mieloide , Neoplasias , Recién Nacido , Humanos , Ratones , Animales , Células Mieloides , Linfocitos T , Neutrófilos
11.
Front Immunol ; 13: 878959, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35833131

RESUMEN

Tumor-draining lymph nodes (TDLNs) are the first organs where the metastatic spread of different types of cancer, including head and neck cancer (HNC), occurs and have therefore high prognostic relevance. Moreover, first anti-cancer immune responses have been shown to be initiated in such LNs via tumor-educated myeloid cells. Among myeloid cells present in TDLNs, neutrophils represent a valuable population and considerably participate in the activation of effector lymphocytes there. Tumor-supportive or tumor-inhibiting activity of neutrophils strongly depends on the surrounding microenvironment. Thus, type I interferon (IFN) availability has been shown to prime anti-tumor activity of these cells. In accordance, mice deficient in type I IFNs show elevated tumor growth and metastatic spread, accompanied by the pro-tumoral neutrophil bias. To reveal the mechanism responsible for this phenomenon, we have studied here the influence of defective type I IFN signaling on the immunoregulatory activity of neutrophils in TDLNs. Live imaging of such LNs was performed using two-photon microscopy in a transplantable murine HNC model. CatchupIVM-red and Ifnar1-/- (type I IFN receptor- deficient) CatchupIVM-red mice were used to visualize neutrophils and to assess their interaction with T-cells in vivo. We have evaluated spatiotemporal patterns of neutrophil/T-cell interactions in LNs in the context of type I interferon receptor (IFNAR1) availability in tumor-free and tumor-bearing animals. Moreover, phenotypic and functional analyses were performed to further characterize the mechanisms regulating neutrophil immunoregulatory capacity. We demonstrated that inactive IFNAR1 leads to elevated accumulation of neutrophils in TDLNs. However, these neutrophils show significantly impaired capacity to interact with and to stimulate T-cells. As a result, a significant reduction of contacts between neutrophils and T lymphocytes is observed, with further impairment of T-cell proliferation and activation. This possibly contributes to the enhanced tumor growth in Ifnar1-/- mice. In agreement with this, IFNAR1-independent activation of downstream IFN signaling using IFN-λ improved the immunostimulatory capacity of neutrophils in TDLNs and contributed to the suppression of tumor growth. Our results suggest that functional type I IFN signaling is essential for neutrophil immunostimulatory capacity and that stimulation of this signaling may provide a therapeutic opportunity in head and neck cancer patients.


Asunto(s)
Interferón Tipo I , Neoplasias , Receptor de Interferón alfa y beta , Animales , Interferón Tipo I/inmunología , Ganglios Linfáticos , Ratones , Neoplasias/inmunología , Neutrófilos/inmunología , Receptor de Interferón alfa y beta/deficiencia , Receptor de Interferón alfa y beta/inmunología , Transducción de Señal , Microambiente Tumoral
12.
J Neurosci ; 42(30): 5830-5842, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35701161

RESUMEN

For many decades, synaptic plasticity was believed to be restricted to excitatory transmission. However, in recent years, this view started to change, and now it is recognized that GABAergic synapses show distinct forms of activity-dependent long-term plasticity, but the underlying mechanisms remain obscure. Herein, we asked whether signaling mediated by ß1 or ß3 subunit-containing integrins might be involved in regulating the efficacy of GABAergic synapses, including the NMDA receptor-dependent inhibitory long-term potentiation (iLTP) in the hippocampus. We found that activation of ß3 integrin with fibrinogen induced a stable depression, whereas inhibition of ß1 integrin potentiated GABAergic synapses at CA1 pyramidal neurons in male mice. Additionally, compounds that interfere with the interaction of ß1 or ß3 integrins with extracellular matrix blocked the induction of NMDA-iLTP. In conclusion, we provide the first evidence that integrins are key players in regulating the endogenous modulatory mechanisms of GABAergic inhibition and plasticity in the hippocampus.SIGNIFICANCE STATEMENT Epilepsy, schizophrenia, and anxiety are just a few medical conditions associated with dysfunctional inhibitory synaptic transmission. GABAergic synapses are known for their extraordinary susceptibility to modulation by endogenous factors and exogenous pharmacological agents. We describe here that integrins, adhesion proteins, play a key role in the modulation of inhibitory synaptic transmission. Specifically, we show that interference with integrin-dependent adhesion results in a variety of effects on the amplitude and frequency of GABAergic mIPSCs. Activation of ß3 subunit-containing integrins induces inhibitory long-term depression, whereas the inhibition of ß1 subunit-containing integrins induces iLTP. Our results unveil an important mechanism controlling synaptic inhibition, which opens new avenues into the usage of integrin-aimed pharmaceuticals as modulators of GABAergic synapses.


Asunto(s)
Integrinas , Transmisión Sináptica , Animales , Hipocampo/metabolismo , Integrinas/metabolismo , Masculino , Ratones , Plasticidad Neuronal/fisiología , Células Piramidales/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología
13.
Cancers (Basel) ; 14(9)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35565197

RESUMEN

Small extracellular vesicles (sEVs) play essential roles in intercellular signaling both in normal and pathophysiological conditions. Comprehensive studies of dsDNA associated with sEVs are hampered by a lack of methods, allowing efficient separation of sEVs from free-circulating DNA and apoptotic bodies. In this work, using controlled culture conditions, we enriched the reproducible separation of sEVs from free-circulated components by combining tangential flow filtration, size-exclusion chromatography, and ultrafiltration (TSU). EV-enriched fractions (F2 and F3) obtained using TSU also contained more dsDNA derived from the host genome and mitochondria, predominantly localized inside the vesicles. Three-dimensional reconstruction of high-resolution imaging showed that the recipient cell membrane barrier restricts a portion of EV-DNA. Simultaneously, the remaining EV-DNA overcomes it and enters the cytoplasm and nucleus. In the cytoplasm, EV-DNA associates with dsDNA-inflammatory sensors (cGAS/STING) and endosomal proteins (Rab5/Rab7). Relevant to cancer, we found that EV-DNA isolated from leukemia cell lines communicates with mesenchymal stromal cells (MSCs), a critical component in the BM microenvironment. Furthermore, we illustrated the arrangement of sEVs and EV-DNA at a single vesicle level using super-resolution microscopy. Altogether, employing TSU isolation, we demonstrated EV-DNA distribution and a tool to evaluate the exact EV-DNA role of cell-cell communication in cancer.

14.
Sci Rep ; 12(1): 5877, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35393474

RESUMEN

Patients with hereditary haemorrhagic telangiectasia (HHT), also known as Rendu-Osler-Weber syndrome, suffer from the consequences of abnormal vessel structures. These structures can lead to haemorrhages or shunt effects in liver, lungs and brain. This inherited and rare disease is characterized by mutations affecting the transforming growth factor-ß (TGF-ß)/Bone Morphogenetic Protein (BMP) pathway that results in arteriovenous malformations and studies indicate an impaired immune response. The mechanism underlying this altered immune response in HHT patients is still unknown. TGF-ß interacts with hypoxia inducible factors (HIF), which both orchestrate inflammatory and angiogenic processes. Therefore, we analysed the expression of HIF and related genes in whole blood samples from HHT patients. We could show significantly decreased expression of HIF-1α on the mRNA and protein level. However, commonly known upstream regulators of HIF-1α in inflammatory responses were not affected, whereas HIF-1α target genes were significantly downregulated. There was no correlation between HIF1A or HIF2A gene expression and the severity of HHT detected. Our results represent a rare case of HIF-1α downregulation in a human disease, which underlines the relevance of HIFs in HHT. The study indicates an interaction of the known mutation in HHT and the dysregulation of HIF-1α in HHT patients, which might contribute to the clinical phenotype.


Asunto(s)
Malformaciones Arteriovenosas , Subunidad alfa del Factor 1 Inducible por Hipoxia , Telangiectasia Hemorrágica Hereditaria , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Mutación , Telangiectasia Hemorrágica Hereditaria/genética , Factor de Crecimiento Transformador beta/metabolismo
15.
Cells ; 11(5)2022 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-35269524

RESUMEN

Head and Neck Cancers (HNCs) have highly immunosuppressive properties. Small extracellular vesicles (sEVs), including exosomes, nanosized mediators of intercellular communication in the blood, carry immunosuppressive proteins and effectively inhibit anti-tumor immune responses in HNCs. This study evaluates immunosuppressive markers on sEVs from 40 HNC patients at different disease stages and 3- and 6-month follow-up after surgery and/or chemoradiotherapy. As controls, sEVs from normal donors (NDs) are examined. Immunoregulatory surface markers on sEVs were detected as relative fluorescence intensity (RFI) using on-bead flow cytometry, and their expression levels were monitored in the early and late stages of HNC and during follow-up. In parallel, the sEV-mediated apoptosis of CD8+ Jurkat cells was assessed. Together with TGF-ß1 and PD-L1 abundance, total sEV proteins are elevated with disease progression. In contrast, total sEV protein, including TGF-ß1, PD-1 and PD-L1, decrease upon therapy response during follow-up. Overall survival analysis implies that high sEV PD-1/PD-L1 content is an unfavorable prognostic marker in HNC. Consistently, the sEV-mediated induction of apoptosis in CD8+ T cells correlates with the disease activity and therapy response. These findings indicate that a combination of immunoregulatory marker profiles should be preferred over a single marker to monitor disease progression and therapy response in HNC.


Asunto(s)
Vesículas Extracelulares , Neoplasias de Cabeza y Cuello , Antígeno B7-H1/metabolismo , Linfocitos T CD8-positivos , Progresión de la Enfermedad , Vesículas Extracelulares/metabolismo , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/terapia , Humanos , Inmunidad , Receptor de Muerte Celular Programada 1/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
16.
Cancers (Basel) ; 14(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35158807

RESUMEN

Angiogenesis, the formation of new blood vessels from already existing vasculature, is tightly regulated by pro- and anti-angiogenic stimuli and occurs under both physiological and pathological conditions. Tumor angiogenesis is central for tumor development, and an "angiogenic switch" could be initiated by multiple immune cells, such as neutrophils. Tumor-associated neutrophils promote tumor angiogenesis by the release of both conventional and non-conventional pro-angiogenic factors. Therefore, neutrophil-mediated tumor angiogenesis should be taken into consideration in the design of novel anti-cancer therapy. This review recapitulates the complex role of neutrophils in tumor angiogenesis and summarizes neutrophil-derived pro-angiogenic factors and mechanisms regulating angiogenic activity of tumor-associated neutrophils. Moreover, it provides up-to-date information about neutrophil-targeting therapy, complementary to anti-angiogenic treatment.

17.
Int J Cancer ; 150(7): 1198-1211, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34751438

RESUMEN

Angiogenesis plays an important role during tumor growth and metastasis. We could previously show that Type I interferon (IFN)-deficient tumor-associated neutrophils (TANs) show strong pro-angiogenic activity, and stimulate tumor angiogenesis and growth. However, the exact mechanism responsible for their pro-angiogenic shift is not clear. Here, we set out to delineate the molecular mechanism and factors regulating pro-angiogenic properties of neutrophils in the context of Type I IFN availability. We demonstrate that neutrophils from IFN-deficient (Ifnar1-/- ) mice efficiently release pro-angiogenic factors, such as VEGF, MMP9 or BV8, and thus significantly support the vascular normalization of tumors by increasing the maturation of perivascular cells. Mechanistically, we could show here that the expression of pro-angiogenic factors in neutrophils is controlled by the transcription factor forkhead box protein O3a (FOXO3a), which activity depends on its post-translational modifications, such as deacetylation or phosphorylation. In TANs isolated from Ifnar1-/- mice, we observe significantly elevated SIRT1, resulting in SIRT1-mediated deacetylation of FOXO3a, its nuclear retention and activation. Activated FOXO3a supports in turn the transcription of pro-angiogenic genes in TANs. In the absence of SIRT1, or after its inhibition in neutrophils, elevated kinase MEK/ERK and PI3K/AKT activity is observed, leading to FOXO3a phosphorylation, cytoplasmic transfer and inactivation. In summary, we have found that FOXO3a is a key transcription factor controlling the angiogenic switch of neutrophils. Post-translational FOXO3a modifications regulate its transcriptional activity and, as a result, the expression of pro-angiogenic factors supporting development of vascular network in growing tumors. Therefore, targeting FOXO3a activity could provide a novel strategy of antiangiogenic targeted therapy for cancer.


Asunto(s)
Proteína Forkhead Box O3/metabolismo , Interferón Tipo I/fisiología , Neoplasias/irrigación sanguínea , Neovascularización Patológica/etiología , Neutrófilos/fisiología , Sirtuina 1/fisiología , Acetilación , Animales , Línea Celular Tumoral , Humanos , Ratones , Ratones Endogámicos C57BL , Procesamiento Proteico-Postraduccional
18.
Adv Exp Med Biol ; 1329: 93-108, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34664235

RESUMEN

Metastasis is a multistep process requiring tumor cell detachment from the primary tumor and migration to secondary target organs through the lymphatic or blood circulatory systems. In certain cancers, specific organs are predisposed to metastases. Metastatic homing to distant organs is orchestrated by the formation of supportive metastatic microenvironment in such organs, called pre-metastatic niche. Formation of pre-metastatic niche depends on the primary tumor-mediated recruitment of bone marrow-derived myeloid cells, including neutrophils. The contribution of neutrophils to the formation of the pre-metastatic niche is recently getting growing attention. Of note, these cells can either stimulate or inhibit metastatic seeding, depending on the activation of these cells. Here, we concentrate on pro-metastatic functions of neutrophils and the mechanisms involved in this process. Pro-tumor neutrophils support the formation of pre-metastatic niche, attract tumor cells, and directly stimulate proliferation of these cells. Moreover, immunosuppressive neutrophils, also called granulocytic MDSC, promote metastatic progression by the inhibition of antitumor T-cells. Altogether, neutrophil pro-tumor properties significantly affect metastatic spread in the host. Here, we provide an up-to-date overview of roles neutrophils play in the regulation of metastatic processes in different organs.


Asunto(s)
Neoplasias , Neutrófilos , Humanos , Microambiente Tumoral
19.
Cancers (Basel) ; 13(12)2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34205654

RESUMEN

The role of neutrophils during cancer formation and elimination is diverse. Here, for the first time, we investigate neutrophil helper cells (NBH), their influence on B cell activity in the regional lymph nodes (RLN) of head-and-neck cancer patients and the effect of this neutrophil/B cell interaction on patient prognosis. Circulating and RLN neutrophils of patients with stage I-IV head-and-neck squamous cell carcinoma were investigated with flow cytometry and qPCR. In addition, neutrophil/B cell co-localization in RLNs was evaluated using immunohistochemistry. B cell proliferation was assessed and correlated with the distance to neutrophils. Patient survival was evaluated. Neutrophils with the helper cell phenotype were identified in the RLN of HNC patients. B cells in close proximity to such NBH showed significantly higher proliferation rates, together with elevated activation-induced cytidine deaminase (AID) expression. Notably, patient survival was significantly higher in individuals with high NBH frequencies in the B follicles of RLNs. Neutrophils in RLN can support T cell-independent activation of the adaptive immune system through B cell stimulation, capturing helper cell phenotype character. The presence of such helper neutrophils in the RLNs of HNC patients positively correlates with patient prognosis.

20.
Brain Behav Immun ; 92: 234-244, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33333168

RESUMEN

Neonatal encephalopathy following hypoxia-ischemia (HI) is a major cause of long-term morbidity and mortality in children. Even though HI-induced neuroinflammation, involving infiltration of peripheral immune cells into the CNS has been associated with disease pathogenesis, the specific role of neutrophils is highly debated. Due to immaturity of the neonatal immune system, it has been assumed that neutrophils are less clinically relevant in neonatal HI-induced brain injury. In the present study, we demonstrate that neutrophils are rapidly activated in the neonatal brain after exposure to experimental HI, revealed by an enhanced proportion of CD86+ cells and an increased expression of CD11b compared to splenic and blood neutrophils. Furthermore, production of reactive oxygen species and the proportion of hyperactivated/aged (CXCR4+CD62L-) cells was enhanced in brain compared to peripheral neutrophils. Delayed neutrophil depletion, initiated 12 h after HI resulted in reduced cellular neurodegeneration, associated with reduced micro- and astroglial activation. In the present study, we uncovered a new complex switch of the phenotype in brain neutrophils, which may offer new possibilities for the development of selective therapeutic approaches by modulation of neutrophils in the early post-hypoxic disease phase.


Asunto(s)
Hipoxia-Isquemia Encefálica , Neutrófilos , Anciano , Animales , Animales Recién Nacidos , Encéfalo , Niño , Humanos , Hipoxia , Recién Nacido , Isquemia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...