Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 109(3-1): 034401, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38632795

RESUMEN

The diffusive ion current is insufficient to explain the fast saltatory conduction observed in myelinated axons and in pain-sensing C fibers in the human nervous system, where the stimulus signal exhibits a velocity two orders of magnitude greater than the upper limit of ion diffusion velocity, even when the diffusion is accelerated by myelin, as in the discrete cable model including the Hodgkin-Huxley mechanism. The agreement with observations has been achieved in a wave-type model of stimulus signal kinetics via synchronized ion local density oscillations propagating as a wave in axons periodically corrugated by myelin segments in myelinated axons, or by periodically distributed rafts with clusters of Na^{+} channels in C fibers. The resulting so-called plasmon-polariton model for saltatory conduction reveals also the specific role of myelin, which is different from what was previously thought. This can be important for identifying a new target for the future treatment of demyelination diseases.


Asunto(s)
Vaina de Mielina , Conducción Nerviosa , Humanos , Conducción Nerviosa/fisiología , Vaina de Mielina/fisiología , Axones/metabolismo , Transporte Iónico , Simulación por Computador , Potenciales de Acción/fisiología
2.
Eur Biophys J ; 49(5): 343-360, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32588093

RESUMEN

We present a new wave-type model of saltatory conduction in myelinated axons. Poor conductivity in the neuron cytosol limits electrical current signal velocity according to cable theory, to 1-3 m/s, whereas saltatory conduction occurs with a velocity of 100-300 m/s. We propose a wave-type mechanism for saltatory conduction in the form of the kinetics of an ionic plasmon-polariton being the hybrid of the electro-magnetic wave and of the synchronized ionic plasma oscillations in myelinated segments along an axon. The model agrees with observations and allows for description of the regulatory role of myelin. It explains also the mechanism of conduction deficiency in demyelination syndromes such as multiple sclerosis. The recently observed micro-saltatory conduction in ultrathin unmyelinated C fibers with periodic ion gate clusters is also explained.


Asunto(s)
Axones/metabolismo , Modelos Neurológicos , Vaina de Mielina/fisiología , Fibras Nerviosas Amielínicas/fisiología , Potenciales de Acción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA