Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ecol Resour ; 21(6): 1850-1865, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33750003

RESUMEN

Assignment of parentage with molecular markers is most difficult when the true parents have close relatives in the adult population. Here, we present an efficient solution to that problem by extending simple exclusion approaches to parentage analysis with single nucleotide polymorphic markers (SNPs). We augmented the previously published homozygote opposite test (hot), which counts mismatches due to the offspring and candidate parent having different homozygous genotypes, with an additional test. In this case, parents homozygous for the same SNP are incompatible with heterozygous offspring (i.e., "Homozygous Identical Parents, Heterozygous Offspring are Precluded": hiphop). We tested this approach in a cooperatively breeding bird, the superb fairy-wren, Malurus cyaneus, where rates of extra-pair paternity are exceptionally high, and where paternity assignment is challenging because breeding males typically have first-order adult relatives in their neighbourhood. Combining the tests and conditioning on the maternal genotype with a set of 1376 autosomal SNPs always allowed us to distinguish a single most likely sire from his relatives, and also to identify cases where the true sire must have been unsampled. In contrast, if just the hot test was used, we failed to identify a single most-likely sire in 2.5% of cases. Resampling enabled us to create guidelines for the number of SNPs required when first-order relatives coexist in the mating pool. Our method, implemented in the R package hiphop, therefore provides unambiguous parentage assignments even in systems with complex social organisation. We also identified a suite of Z- and W-linked SNPs that always identified sex correctly.


Asunto(s)
Marcadores Genéticos , Pájaros Cantores , Animales , Femenino , Genotipo , Masculino , Polimorfismo de Nucleótido Simple , Reproducción , Pájaros Cantores/genética
2.
Mol Ecol Resour ; 20(6): 1470-1485, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32492756

RESUMEN

With recent advances in sequencing technology, genomic data are changing how important conservation management decisions are made. Applications such as Close-Kin Mark-Recapture demand large amounts of data to estimate population size and structure, and their full potential can only be realised through ongoing improvements in genotyping strategies. Here we introduce DArTcap, a cost-efficient method that combines DArTseq and sequence capture, and illustrate its use in a high resolution population analysis of Glyphis garricki, a rare, poorly known and threatened euryhaline shark. Clustering analyses and spatial distribution of kin pairs from four different regions across northern Australia and one in Papua New Guinea, representing its entire known range, revealed that each region hosts at least one distinct population. Further structuring is likely within Van Diemen Gulf, the region that included the most rivers sampled, suggesting additional population structuring would be found if other rivers were sampled. Coalescent analyses and spatially explicit modelling suggest that G. garricki experienced a recent range expansion during the opening of the Gulf of Carpentaria following the conclusion of the Last Glacial Maximum. The low migration rates between neighbouring populations of a species that is found only in restricted coastal and riverine habitats show the importance of managing each population separately, including careful monitoring of local and remote anthropogenic activities that may affect their environments. Overall we demonstrated how a carefully chosen SNP panel combined with DArTcap can provide highly accurate kinship inference and also support population structure and historical demography analyses, therefore maximising cost-effectiveness.


Asunto(s)
Genética de Población , Tiburones , Animales , Australia , Genotipo , Papúa Nueva Guinea , Dinámica Poblacional , Ríos , Tiburones/genética
3.
Mol Ecol Resour ; 19(4): 957-969, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30681773

RESUMEN

Wildlife diseases are a recognized driver of global biodiversity loss, have substantial economic impacts, and are increasingly becoming a threat to human health. Disease surveillance is critical but remains difficult in the wild due to the substantial costs and potential biases associated with most disease detection methods. Noninvasive scat surveys have been proposed as a health monitoring methodology to overcome some of these limitations. Here, we use the known threat of Chlamydia disease to the iconic, yet vulnerable, koala Phascolarctos cinereus to compare three methods for Chlamydia detection in scats: multiplex quantitative PCR, next generation sequencing, and a detection dog specifically trained on scats from Chlamydia-infected koalas. All three methods demonstrated 100% specificity, while sensitivity was variable. Of particular interest is the variable sensitivity of these diagnostic tests to detect sick individuals (i.e., not only infection as confirmed by Chlamydia-positive swabs, but with observable clinical signs of the disease); for koalas with urogenital tract disease signs, sensitivity was 78% with quantitative PCR, 50% with next generation genotyping and 100% with the detection dog method. This may be due to molecular methods having to rely on high-quality DNA whereas the dog most likely detects volatile organic compounds. The most appropriate diagnostic test will vary with disease prevalence and the specific aims of disease surveillance. Acknowledging that detection dogs might not be easily accessible to all, the future development of affordable and portable "artificial noses" to detect diseases from scats in the field might enable cost-effective, rapid and large-scale disease surveillance.


Asunto(s)
Bioensayo/métodos , Infecciones por Chlamydia/veterinaria , Chlamydia/aislamiento & purificación , Heces/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Reacción en Cadena de la Polimerasa Multiplex/métodos , Phascolarctidae , Animales , Chlamydia/genética , Salud Poblacional , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Sensibilidad y Especificidad
4.
Ecol Evol ; 8(6): 3139-3151, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29607013

RESUMEN

Maintaining genetic diversity is a crucial component in conserving threatened species. For the iconic Australian koala, there is little genetic information on wild populations that is not either skewed by biased sampling methods (e.g., sampling effort skewed toward urban areas) or of limited usefulness due to low numbers of microsatellites used. The ability to genotype DNA extracted from koala scats using next-generation sequencing technology will not only help resolve location sample bias but also improve the accuracy and scope of genetic analyses (e.g., neutral vs. adaptive genetic diversity, inbreeding, and effective population size). Here, we present the successful SNP genotyping (1272 SNP loci) of koala DNA extracted from scat, using a proprietary DArTseq™ protocol. We compare genotype results from two-day-old scat DNA and 14-day-old scat DNA to a blood DNA template, to test accuracy of scat genotyping. We find that DNA from fresher scat results in fewer loci with missing information than DNA from older scat; however, 14-day-old scat can still provide useful genetic information, depending on the research question. We also find that a subset of 209 conserved loci can accurately identify individual koalas, even from older scat samples. In addition, we find that DNA sequences identified from scat samples through the DArTseq™ process can provide genetic identification of koala diet species, bacterial and viral pathogens, and parasitic organisms.

5.
Methods Mol Biol ; 888: 67-89, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22665276

RESUMEN

In the last 20 years, we have observed an exponential growth of the DNA sequence data and simular increase in the volume of DNA polymorphism data generated by numerous molecular marker technologies. Most of the investment, and therefore progress, concentrated on human genome and genomes of selected model species. Diversity Arrays Technology (DArT), developed over a decade ago, was among the first "democratizing" genotyping technologies, as its performance was primarily driven by the level of DNA sequence variation in the species rather than by the level of financial investment. DArT also proved more robust to genome size and ploidy-level differences among approximately 60 organisms for which DArT was developed to date compared to other high-throughput genotyping technologies. The success of DArT in a number of organisms, including a wide range of "orphan crops," can be attributed to the simplicity of underlying concepts: DArT combines genome complexity reduction methods enriching for genic regions with a highly parallel assay readout on a number of "open-access" microarray platforms. The quantitative nature of the assay enabled a number of applications in which allelic frequencies can be estimated from DArT arrays. A typical DArT assay tests for polymorphism tens of thousands of genomic loci with the final number of markers reported (hundreds to thousands) reflecting the level of DNA sequence variation in the tested loci. Detailed DArT methods, protocols, and a range of their application examples as well as DArT's evolution path are presented.


Asunto(s)
Genoma , Genómica/métodos , Tipificación Molecular/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Programas Informáticos , Alelos , Animales , Mapeo Cromosómico , Frecuencia de los Genes , Sitios Genéticos , Tamaño del Genoma , Genotipo , Humanos , Plantas , Polimorfismo Genético
6.
Mol Breed ; 29(3): 645-660, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22408382

RESUMEN

Diversity Arrays Technology (DArT) provides a high-throughput whole-genome genotyping platform for the detection and scoring of hundreds of polymorphic loci without any need for prior sequence information. The work presented here details the development and performance of a DArT genotyping array for apple. This is the first paper on DArT in horticultural trees. Genetic mapping of DArT markers in two mapping populations and their integration with other marker types showed that DArT is a powerful high-throughput method for obtaining accurate and reproducible marker data, despite the low cost per data point. This method appears to be suitable for aligning the genetic maps of different segregating populations. The standard complexity reduction method, based on the methylation-sensitive PstI restriction enzyme, resulted in a high frequency of markers, although there was 52-54% redundancy due to the repeated sampling of highly similar sequences. Sequencing of the marker clones showed that they are significantly enriched for low-copy, genic regions. The genome coverage using the standard method was 55-76%. For improved genome coverage, an alternative complexity reduction method was examined, which resulted in less redundancy and additional segregating markers. The DArT markers proved to be of high quality and were very suitable for genetic mapping at low cost for the apple, providing moderate genome coverage. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11032-011-9579-5) contains supplementary material, which is available to authorized users.

7.
Proc Natl Acad Sci U S A ; 101(26): 9915-20, 2004 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-15192146

RESUMEN

Diversity Arrays Technology (DArT) can detect and type DNA variation at several hundred genomic loci in parallel without relying on sequence information. Here we show that it can be effectively applied to genetic mapping and diversity analyses of barley, a species with a 5,000-Mbp genome. We tested several complexity reduction methods and selected two that generated the most polymorphic genomic representations. Arrays containing individual fragments from these representations generated DArT fingerprints with a genotype call rate of 98.0% and a scoring reproducibility of at least 99.8%. The fingerprints grouped barley lines according to known genetic relationships. To validate the Mendelian behavior of DArT markers, we constructed a genetic map for a cross between cultivars Steptoe and Morex. Nearly all polymorphic array features could be incorporated into one of seven linkage groups (98.8%). The resulting map comprised approximately 385 unique DArT markers and spanned 1,137 centimorgans. A comparison with the restriction fragment length polymorphism-based framework map indicated that the quality of the DArT map was equivalent, if not superior, to that of the framework map. These results highlight the potential of DArT as a generic technique for genome profiling in the context of molecular breeding and genomics.


Asunto(s)
Variación Genética/genética , Genoma de Planta , Genómica/métodos , Hordeum/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Cruzamientos Genéticos , Dermatoglifia del ADN , Metilación de ADN , Marcadores Genéticos/genética , Genotipo , Hordeum/clasificación , Filogenia , Polimorfismo Genético/genética , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...