Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Transl Stroke Res ; 15(1): 165-178, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-36633794

RESUMEN

Stroke remains a leading cause of mortality; however, available therapeutics are limited. The study of ischemic tolerance, in paradigms such as resveratrol preconditioning (RPC), provides promise for the development of novel prophylactic therapies. The heavily oxidative environment following stroke promotes poly-ADP-ribose polymerase 1 (PARP1)-overactivation and parthanatos, both of which are major contributors to neuronal injury. In this study, we tested the hypothesis that RPC instills ischemic tolerance through decreasing PARP1 overexpression and parthanatos following in vitro and in vivo cerebral ischemia. To test this hypothesis, we utilized rat primary neuronal cultures (PNCs) and middle cerebral artery occlusion (MCAO) in the rat as in vitro and in vivo models, respectively. RPC was administered 2 days preceding ischemic insults. RPC protected PNCs against oxygen and glucose deprivation (OGD)-induced neuronal loss, as well as increases in total PARP1 protein, implying protection against PARP1-overactivation. Twelve hours following OGD, we observed reductions in NAD+/NADH as well as an increase in AIF nuclear translocation, but RPC ameliorated NAD+/NADH loss and blocked AIF nuclear translocation. MCAO in the rat induced AIF nuclear translocation in the ischemic penumbra after 24 h, which was ameliorated with RPC. We tested the hypothesis that RPC's neuroprotection was instilled through long-term downregulation of nuclear PARP1 protein. RPC downregulated nuclear PARP1 protein for at least 6 days in PNCs, likely contributing to RPC's ischemic tolerance. This study describes a novel mechanism by which RPC instills prophylaxis against ischemia-induced PARP1 overexpression and parthanatos, through a long-term reduction of nuclear PARP1 protein.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular , Ratas , Animales , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Resveratrol/farmacología , NAD , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/prevención & control , Infarto Cerebral , Muerte Celular/fisiología
2.
Neurotherapeutics ; 20(4): 1177-1197, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37208551

RESUMEN

Perturbations in synaptic function are major determinants of several neurological diseases and have been associated with cognitive impairments after cerebral ischemia (CI). Although the mechanisms underlying CI-induced synaptic dysfunction have not been well defined, evidence suggests that early hyperactivation of the actin-binding protein, cofilin, plays a role. Given that synaptic impairments manifest shortly after CI, prophylactic strategies may offer a better approach to prevent/mitigate synaptic damage following an ischemic event. Our laboratory has previously demonstrated that resveratrol preconditioning (RPC) promotes cerebral ischemic tolerance, with many groups highlighting beneficial effects of resveratrol treatment on synaptic and cognitive function in other neurological conditions. Herein, we hypothesized that RPC would mitigate hippocampal synaptic dysfunction and pathological cofilin hyperactivation in an ex vivo model of ischemia. Various electrophysiological parameters and synaptic-related protein expression changes were measured under normal and ischemic conditions utilizing acute hippocampal slices derived from adult male mice treated with resveratrol (10 mg/kg) or vehicle 48 h prior. Remarkably, RPC significantly increased the latency to anoxic depolarization, decreased cytosolic calcium accumulation, prevented aberrant increases in synaptic transmission, and rescued deficits in long-term potentiation following ischemia. Additionally, RPC upregulated the expression of the activity-regulated cytoskeleton associated protein, Arc, which was partially required for RPC-mediated attenuation of cofilin hyperactivation. Taken together, these findings support a role for RPC in mitigating CI-induced excitotoxicity, synaptic dysfunction, and pathological over-activation of cofilin. Our study provides further insight into mechanisms underlying RPC-mediated neuroprotection against CI and implicates RPC as a promising strategy to preserve synaptic function after ischemia.


Asunto(s)
Factores Despolimerizantes de la Actina , Isquemia Encefálica , Ratones , Masculino , Animales , Resveratrol/farmacología , Isquemia , Hipocampo/patología
3.
Stroke ; 54(4): 1099-1109, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36912143

RESUMEN

BACKGROUND: Cholinergic cells originating from the nuclei of the basal forebrain (BF) are critical for supporting various memory processes, yet BF cholinergic cell viability has not been explored in the context of focal cerebral ischemia. In the present study, we examined cell survival within several BF nuclei in rodents following transient middle cerebral artery occlusion. We tested the hypothesis that a previously established neuroprotective therapy-resveratrol preconditioning-would rescue BF cell loss, deficits in cholinergic-related memory performance, and hippocampal synaptic dysfunction after focal cerebral ischemia. METHODS: Adult (2-3-month old) male Sprague-Dawley rats or wild-type C57Bl/6J mice were injected intraperitoneally with a single dose of resveratrol or vehicle and subjected to transient middle cerebral artery occlusion using the intraluminal suture method 2 days later. Histopathological, behavioral, and electrophysiological outcomes were measured 1-week post-reperfusion. Animals with reduction in cerebral blood flow <30% of baseline were excluded. RESULTS: Cholinergic cell loss was observed in the medial septal nucleus and diagonal band of Broca following transient middle cerebral artery occlusion. This effect was prevented by resveratrol preconditioning, which also ameliorated transient middle cerebral artery occlusion-induced deficits in cognitive performance and hippocampal long-term potentiation. CONCLUSIONS: We demonstrate for the first time that focal cerebral ischemia induces cholinergic cell death within memory-relevant nuclei of the BF. The preservation of cholinergic cell viability may provide a mechanism by which resveratrol preconditioning improves memory performance and preserves functionality of memory-processing brain structures after focal cerebral ischemia.


Asunto(s)
Infarto de la Arteria Cerebral Media , Trastornos de la Memoria , Fármacos Neuroprotectores , Resveratrol , Animales , Ratones , Ratas , Isquemia Encefálica , Muerte Celular/efectos de los fármacos , Resveratrol/farmacología , Cognición
4.
Front Physiol ; 13: 908689, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35936890

RESUMEN

Sirtuins are an evolutionarily conserved family of regulatory proteins that function in an NAD+ -dependent manner. The mammalian family of sirtuins is composed of seven histone deacetylase and ADP-ribosyltransferase proteins (SIRT1-SIRT7) that are found throughout the different cellular compartments of the cell. Sirtuins in the brain have received considerable attention in cognition due to their role in a plethora of metabolic and age-related diseases and their ability to induce neuroprotection. More recently, sirtuins have been shown to play a role in normal physiological cognitive function, and aberrant sirtuin function is seen in pathological cellular states. Sirtuins are believed to play a role in cognition through enhancing synaptic plasticity, influencing epigenetic regulation, and playing key roles in molecular pathways involved with oxidative stress affecting mitochondrial function. This review aims to discuss recent advances in the understanding of the role of mammalian sirtuins in cognitive function and the therapeutic potential of targeting sirtuins to ameliorate cognitive deficits in neurological disorders.

5.
Transl Stroke Res ; 11(3): 418-432, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31473978

RESUMEN

The preservation of mitochondrial function is a major protective strategy for cerebral ischemic injuries. Previously, our laboratory demonstrated that protein kinase C epsilon (PKCε) promotes the synthesis of mitochondrial nicotinamide adenine dinucleotide (NAD+). NAD+ along with its reducing equivalent, NADH, is an essential co-factor needed for energy production from glycolysis and oxidative phosphorylation. Yet, NAD+/NADH are impermeable to the inner mitochondrial membrane and their import into the mitochondria requires the activity of specific shuttles. The most important neuronal NAD+/NADH shuttle is the malate-aspartate shuttle (MAS). The MAS has been implicated in synaptic function and is potentially dysregulated during cerebral ischemia. The aim of this study was to determine if metabolic changes induced by PKCε preconditioning involved regulation of the MAS. Using primary neuronal cultures, we observed that the activation of PKCε enhanced mitochondrial respiration and glycolysis in vitro. Conversely, inhibition of the MAS resulted in decreased oxidative phosphorylation and glycolytic capacity. We further demonstrated that activation of PKCε increased the phosphorylation of key components of the MAS in rat brain synaptosomal fractions. Additionally, PKCε increased the enzyme activity of glutamic oxaloacetic transaminase 2 (GOT2), an effect that was dependent on the import of PKCε into the mitochondria and phosphorylation of GOT2. Furthermore, PKCε activation was able to rescue decreased GOT2 activity induced by ischemia. These findings reveal novel protective targets and mechanisms against ischemic injury, which involves PKCε-mediated phosphorylation and activation of GOT2 in the MAS.


Asunto(s)
Aspartato Aminotransferasa Mitocondrial/metabolismo , Isquemia Encefálica/enzimología , NAD/metabolismo , Neuronas/enzimología , Proteína Quinasa C-epsilon/metabolismo , Animales , Malatos/metabolismo , Masculino , Fosforilación , Cultivo Primario de Células , Ratas Sprague-Dawley
6.
Mol Neurobiol ; 56(6): 4549-4565, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30343466

RESUMEN

Neuroprotective agents administered post-cerebral ischemia have failed so far in the clinic to promote significant recovery. Thus, numerous efforts were redirected toward prophylactic approaches such as preconditioning as an alternative therapeutic strategy. Our laboratory has revealed a novel long-term window of cerebral ischemic tolerance mediated by resveratrol preconditioning (RPC) that lasts for 2 weeks in mice. To identify its mediators, we conducted an RNA-seq experiment on the cortex of mice 2 weeks post-RPC, which revealed 136 differentially expressed genes. The majority of genes (116/136) were downregulated upon RPC and clustered into biological processes involved in transcription, synaptic signaling, and neurotransmission. The downregulation in these processes was reminiscent of metabolic depression, an adaptation used by hibernating animals to survive severe ischemic states by downregulating energy-consuming pathways. Thus, to assess metabolism, we used a neuronal-astrocytic co-culture model and measured the cellular respiration rate at the long-term window post-RPC. Remarkably, we observed an increase in glycolysis and mitochondrial respiration efficiency upon RPC. We also observed an increase in the expression of genes involved in pyruvate uptake, TCA cycle, and oxidative phosphorylation, all of which indicated an increased reliance on energy-producing pathways. We then revealed that these nuclear and mitochondrial adaptations, which reduce the reliance on energy-consuming pathways and increase the reliance on energy-producing pathways, are epigenetically coupled through acetyl-CoA metabolism and ultimately increase baseline ATP levels. This increase in ATP would then allow the brain, a highly metabolic organ, to endure prolonged durations of energy deprivation encountered during cerebral ischemia.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Isquemia Encefálica/genética , Isquemia Encefálica/fisiopatología , Metabolismo Energético , Genoma , Precondicionamiento Isquémico , Resveratrol/farmacología , Acetilcoenzima A/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Isquemia Encefálica/patología , Respiración de la Célula/efectos de los fármacos , Técnicas de Cocultivo , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Metabolismo Energético/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Modelos Biológicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas Sprague-Dawley , Factores de Tiempo , Transcriptoma/genética
7.
J Alzheimers Dis ; 67(2): 425-446, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30584147

RESUMEN

Cerebral ischemia remains a leading cause of mortality worldwide. Although the incidence of death has decreased over the years, surviving patients may suffer from long-term cognitive impairments and have an increased risk for dementia. Unfortunately, research aimed toward developing therapies that can improve cognitive outcomes following cerebral ischemia has proved difficult given the fact that little is known about the underlying processes involved. Nevertheless, mechanisms that disrupt neural network activity may provide valuable insight, since disturbances in both local and global networks in the brain have been associated with deficits in cognition. In this review, we suggest that abnormal neural dynamics within different brain networks may arise from disruptions in synaptic plasticity processes and circuitry after ischemia. This discussion primarily concerns disruptions in local network activity within the hippocampus and other extra-hippocampal components of the Papez circuit, given their role in memory processing. However, impaired synaptic plasticity processes and disruptions in structural and functional connections within the Papez circuit have important implications for alterations within the global network, as well. Although much work is required to establish this relationship, evidence thus far suggests there is a link. If pursued further, findings may lead toward a better understanding of how deficits in cognition arise, not only in cerebral ischemia, but in other neurological diseases as well.


Asunto(s)
Isquemia Encefálica/fisiopatología , Disfunción Cognitiva/fisiopatología , Hipocampo/fisiopatología , Red Nerviosa/fisiopatología , Accidente Cerebrovascular/fisiopatología , Isquemia Encefálica/complicaciones , Isquemia Encefálica/psicología , Disfunción Cognitiva/etiología , Disfunción Cognitiva/psicología , Humanos , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/psicología
8.
Brain Circ ; 4(2): 54-61, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30276337

RESUMEN

Stroke and cardiac arrest result in cerebral ischemia, a highly prevalent medical issue around the world, which is characterized by a reduction or loss of blood flow to the brain. The loss of adequate nutrient supply in the brain during ischemia results in neuronal cell death contributing to cognitive and motor deficits that are usually permanent. Current effective therapies for cerebral ischemia are only applicable after the fact. Thus, the development of preventative therapies of ischemia is imperative. A field of research that continues to show promise in developing therapies for cerebral ischemia is ischemic preconditioning (IPC). IPC is described as exposure to sublethal ischemic events, which induce adaptive changes that provide tolerance to future ischemic events. Through either transient sub-lethal ischemic events, or the actions of a preconditioning molecular mimetic, IPC typically results in augmented gene expression and cellular metabolism. A pivotal target of such changes in gene expression and metabolism is the mitochondrion. Direct and indirect effects on mitochondria by IPC can result in the activation of 5' adenosine monophosphate-activated protein kinase (AMPK), a master regulator of cellular metabolism. Changes in the activity of the posttranslational modifiers, SIRT1 and SIRT5, also contribute to the overall adaptive processes in cellular metabolism and mitochondrial functioning. In this review, we present recently collected evidence to highlight the neuroprotective interactions of mitochondria with AMPK, SIRT1, and SIRT5 in IPC. To produce this review, we utilized PubMed and previous reviews to target and to consolidate the relevant studies and lines of evidence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...