Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
PLoS One ; 19(4): e0299267, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38568950

RESUMEN

BACKGROUND AND OBJECTIVE: Glioblastoma (GBM) is one of the most aggressive and lethal human cancers. Intra-tumoral genetic heterogeneity poses a significant challenge for treatment. Biopsy is invasive, which motivates the development of non-invasive, MRI-based machine learning (ML) models to quantify intra-tumoral genetic heterogeneity for each patient. This capability holds great promise for enabling better therapeutic selection to improve patient outcome. METHODS: We proposed a novel Weakly Supervised Ordinal Support Vector Machine (WSO-SVM) to predict regional genetic alteration status within each GBM tumor using MRI. WSO-SVM was applied to a unique dataset of 318 image-localized biopsies with spatially matched multiparametric MRI from 74 GBM patients. The model was trained to predict the regional genetic alteration of three GBM driver genes (EGFR, PDGFRA and PTEN) based on features extracted from the corresponding region of five MRI contrast images. For comparison, a variety of existing ML algorithms were also applied. Classification accuracy of each gene were compared between the different algorithms. The SHapley Additive exPlanations (SHAP) method was further applied to compute contribution scores of different contrast images. Finally, the trained WSO-SVM was used to generate prediction maps within the tumoral area of each patient to help visualize the intra-tumoral genetic heterogeneity. RESULTS: WSO-SVM achieved 0.80 accuracy, 0.79 sensitivity, and 0.81 specificity for classifying EGFR; 0.71 accuracy, 0.70 sensitivity, and 0.72 specificity for classifying PDGFRA; 0.80 accuracy, 0.78 sensitivity, and 0.83 specificity for classifying PTEN; these results significantly outperformed the existing ML algorithms. Using SHAP, we found that the relative contributions of the five contrast images differ between genes, which are consistent with findings in the literature. The prediction maps revealed extensive intra-tumoral region-to-region heterogeneity within each individual tumor in terms of the alteration status of the three genes. CONCLUSIONS: This study demonstrated the feasibility of using MRI and WSO-SVM to enable non-invasive prediction of intra-tumoral regional genetic alteration for each GBM patient, which can inform future adaptive therapies for individualized oncology.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagen , Glioblastoma/genética , Glioblastoma/patología , Medicina de Precisión , Heterogeneidad Genética , Imagen por Resonancia Magnética/métodos , Algoritmos , Aprendizaje Automático , Máquina de Vectores de Soporte , Receptores ErbB/genética
2.
PLoS One ; 18(12): e0287767, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38117803

RESUMEN

Brain cancers pose a novel set of difficulties due to the limited accessibility of human brain tumor tissue. For this reason, clinical decision-making relies heavily on MR imaging interpretation, yet the mapping between MRI features and underlying biology remains ambiguous. Standard (clinical) tissue sampling fails to capture the full heterogeneity of the disease. Biopsies are required to obtain a pathological diagnosis and are predominantly taken from the tumor core, which often has different traits to the surrounding invasive tumor that typically leads to recurrent disease. One approach to solving this issue is to characterize the spatial heterogeneity of molecular, genetic, and cellular features of glioma through the intraoperative collection of multiple image-localized biopsy samples paired with multi-parametric MRIs. We have adopted this approach and are currently actively enrolling patients for our 'Image-Based Mapping of Brain Tumors' study. Patients are eligible for this research study (IRB #16-002424) if they are 18 years or older and undergoing surgical intervention for a brain lesion. Once identified, candidate patients receive dynamic susceptibility contrast (DSC) perfusion MRI and diffusion tensor imaging (DTI), in addition to standard sequences (T1, T1Gd, T2, T2-FLAIR) at their presurgical scan. During surgery, sample anatomical locations are tracked using neuronavigation. The collected specimens from this research study are used to capture the intra-tumoral heterogeneity across brain tumors including quantification of genetic aberrations through whole-exome and RNA sequencing as well as other tissue analysis techniques. To date, these data (made available through a public portal) have been used to generate, test, and validate predictive regional maps of the spatial distribution of tumor cell density and/or treatment-related key genetic marker status to identify biopsy and/or treatment targets based on insight from the entire tumor makeup. This type of methodology, when delivered within clinically feasible time frames, has the potential to further inform medical decision-making by improving surgical intervention, radiation, and targeted drug therapy for patients with glioma.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Imagen de Difusión Tensora , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Glioma/diagnóstico por imagen , Glioma/genética , Glioma/patología , Imagen por Resonancia Magnética/métodos , Biopsia , Encéfalo/patología , Mapeo Encefálico
3.
Nat Commun ; 14(1): 6066, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770427

RESUMEN

Sampling restrictions have hindered the comprehensive study of invasive non-enhancing (NE) high-grade glioma (HGG) cell populations driving tumor progression. Here, we present an integrated multi-omic analysis of spatially matched molecular and multi-parametric magnetic resonance imaging (MRI) profiling across 313 multi-regional tumor biopsies, including 111 from the NE, across 68 HGG patients. Whole exome and RNA sequencing uncover unique genomic alterations to unresectable invasive NE tumor, including subclonal events, which inform genomic models predictive of geographic evolution. Infiltrative NE tumor is alternatively enriched with tumor cells exhibiting neuronal or glycolytic/plurimetabolic cellular states, two principal transcriptomic pathway-based glioma subtypes, which respectively demonstrate abundant private mutations or enrichment in immune cell signatures. These NE phenotypes are non-invasively identified through normalized K2 imaging signatures, which discern cell size heterogeneity on dynamic susceptibility contrast (DSC)-MRI. NE tumor populations predicted to display increased cellular proliferation by mean diffusivity (MD) MRI metrics are uniquely associated with EGFR amplification and CDKN2A homozygous deletion. The biophysical mapping of infiltrative HGG potentially enables the clinical recognition of tumor subpopulations with aggressive molecular signatures driving tumor progression, thereby informing precision medicine targeting.


Asunto(s)
Productos Biológicos , Neoplasias Encefálicas , Glioma , Imágenes de Resonancia Magnética Multiparamétrica , Humanos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Homocigoto , Eliminación de Secuencia , Glioma/diagnóstico por imagen , Glioma/genética , Glioma/patología , Imagen por Resonancia Magnética/métodos
4.
medRxiv ; 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37333148

RESUMEN

Identification of key phenotypic regions such as necrosis, contrast enhancement, and edema on magnetic resonance imaging (MRI) is important for understanding disease evolution and treatment response in patients with glioma. Manual delineation is time intensive and not feasible for a clinical workflow. Automating phenotypic region segmentation overcomes many issues with manual segmentation, however, current glioma segmentation datasets focus on pre-treatment, diagnostic scans, where treatment effects and surgical cavities are not present. Thus, existing automatic segmentation models are not applicable to post-treatment imaging that is used for longitudinal evaluation of care. Here, we present a comparison of three-dimensional convolutional neural networks (nnU-Net architecture) trained on large temporally defined pre-treatment, post-treatment, and mixed cohorts. We used a total of 1563 imaging timepoints from 854 patients curated from 13 different institutions as well as diverse public data sets to understand the capabilities and limitations of automatic segmentation on glioma images with different phenotypic and treatment appearance. We assessed the performance of models using Dice coefficients on test cases from each group comparing predictions with manual segmentations generated by trained technicians. We demonstrate that training a combined model can be as effective as models trained on just one temporal group. The results highlight the importance of a diverse training set, that includes images from the course of disease and with effects from treatment, in the creation of a model that can accurately segment glioma MRIs at multiple treatment time points.

5.
Front Digit Health ; 4: 1007784, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36274654

RESUMEN

We are rapidly approaching a future in which cancer patient digital twins will reach their potential to predict cancer prevention, diagnosis, and treatment in individual patients. This will be realized based on advances in high performance computing, computational modeling, and an expanding repertoire of observational data across multiple scales and modalities. In 2020, the US National Cancer Institute, and the US Department of Energy, through a trans-disciplinary research community at the intersection of advanced computing and cancer research, initiated team science collaborative projects to explore the development and implementation of predictive Cancer Patient Digital Twins. Several diverse pilot projects were launched to provide key insights into important features of this emerging landscape and to determine the requirements for the development and adoption of cancer patient digital twins. Projects included exploring approaches to using a large cohort of digital twins to perform deep phenotyping and plan treatments at the individual level, prototyping self-learning digital twin platforms, using adaptive digital twin approaches to monitor treatment response and resistance, developing methods to integrate and fuse data and observations across multiple scales, and personalizing treatment based on cancer type. Collectively these efforts have yielded increased insights into the opportunities and challenges facing cancer patient digital twin approaches and helped define a path forward. Given the rapidly growing interest in patient digital twins, this manuscript provides a valuable early progress report of several CPDT pilot projects commenced in common, their overall aims, early progress, lessons learned and future directions that will increasingly involve the broader research community.

6.
J Pers Med ; 11(10)2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34683171

RESUMEN

Breast cancer is the most prominent type of cancer among women. Understanding the microenvironment of breast cancer and the interactions between cells and cytokines will lead to better treatment approaches for patients. In this study, we developed a data-driven mathematical model to investigate the dynamics of key cells and cytokines involved in breast cancer development. We used gene expression profiles of tumors to estimate the relative abundance of each immune cell and group patients based on their immune patterns. Dynamical results show the complex interplay between cells and molecules, and sensitivity analysis emphasizes the direct effects of macrophages and adipocytes on cancer cell growth. In addition, we observed the dual effect of IFN-γ on cancer proliferation, either through direct inhibition of cancer cells or by increasing the cytotoxicity of CD8+ T-cells.

7.
Sci Rep ; 11(1): 3932, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33594116

RESUMEN

Radiogenomics uses machine-learning (ML) to directly connect the morphologic and physiological appearance of tumors on clinical imaging with underlying genomic features. Despite extensive growth in the area of radiogenomics across many cancers, and its potential role in advancing clinical decision making, no published studies have directly addressed uncertainty in these model predictions. We developed a radiogenomics ML model to quantify uncertainty using transductive Gaussian Processes (GP) and a unique dataset of 95 image-localized biopsies with spatially matched MRI from 25 untreated Glioblastoma (GBM) patients. The model generated predictions for regional EGFR amplification status (a common and important target in GBM) to resolve the intratumoral genetic heterogeneity across each individual tumor-a key factor for future personalized therapeutic paradigms. The model used probability distributions for each sample prediction to quantify uncertainty, and used transductive learning to reduce the overall uncertainty. We compared predictive accuracy and uncertainty of the transductive learning GP model against a standard GP model using leave-one-patient-out cross validation. Additionally, we used a separate dataset containing 24 image-localized biopsies from 7 high-grade glioma patients to validate the model. Predictive uncertainty informed the likelihood of achieving an accurate sample prediction. When stratifying predictions based on uncertainty, we observed substantially higher performance in the group cohort (75% accuracy, n = 95) and amongst sample predictions with the lowest uncertainty (83% accuracy, n = 72) compared to predictions with higher uncertainty (48% accuracy, n = 23), due largely to data interpolation (rather than extrapolation). On the separate validation set, our model achieved 78% accuracy amongst the sample predictions with lowest uncertainty. We present a novel approach to quantify radiogenomics uncertainty to enhance model performance and clinical interpretability. This should help integrate more reliable radiogenomics models for improved medical decision-making.


Asunto(s)
Genes erbB-1 , Glioblastoma/diagnóstico por imagen , Genómica de Imágenes , Aprendizaje Automático , Modelación Específica para el Paciente , Amplificación de Genes , Glioblastoma/genética , Humanos , Imagen por Resonancia Magnética , Incertidumbre
8.
PLoS One ; 15(3): e0230492, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32218600

RESUMEN

BACKGROUND: Temozolomide (TMZ) has been the standard-of-care chemotherapy for glioblastoma (GBM) patients for more than a decade. Despite this long time in use, significant questions remain regarding how best to optimize TMZ therapy for individual patients. Understanding the relationship between TMZ response and factors such as number of adjuvant TMZ cycles, patient age, patient sex, and image-based tumor features, might help predict which GBM patients would benefit most from TMZ, particularly for those whose tumors lack O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation. METHODS AND FINDINGS: Using a cohort of 90 newly-diagnosed GBM patients treated according to the standard of care, we examined the relationships between several patient and tumor characteristics and volumetric and survival outcomes during adjuvant chemotherapy. Volumetric changes in MR imaging abnormalities during adjuvant therapy were used to assess TMZ response. T1Gd volumetric response is associated with younger patient age, increased number of TMZ cycles, longer time to nadir volume, and decreased tumor invasiveness. Moreover, increased adjuvant TMZ cycles corresponded with improved volumetric response only among more nodular tumors, and this volumetric response was associated with improved survival outcomes. Finally, in a subcohort of patients with known MGMT methylation status, methylated tumors were more diffusely invasive than unmethylated tumors, suggesting the improved response in nodular tumors is not driven by a preponderance of MGMT methylated tumors. CONCLUSIONS: Our finding that less diffusely invasive tumors are associated with greater volumetric response to TMZ suggests patients with these tumors may benefit from additional adjuvant TMZ cycles, even for those without MGMT methylation.


Asunto(s)
Neoplasias Encefálicas , Metilación de ADN/efectos de los fármacos , Metilasas de Modificación del ADN/metabolismo , Enzimas Reparadoras del ADN/metabolismo , ADN de Neoplasias/metabolismo , Glioblastoma , Imagen por Resonancia Magnética , Regiones Promotoras Genéticas , Temozolomida/administración & dosificación , Proteínas Supresoras de Tumor/metabolismo , Adolescente , Adulto , Factores de Edad , Anciano , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Femenino , Glioblastoma/diagnóstico por imagen , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Invasividad Neoplásica
9.
J Digit Imaging ; 33(2): 439-446, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31654174

RESUMEN

The explosion of medical imaging data along with the advent of big data analytics has launched an exciting era for clinical research. One factor affecting the ability to aggregate large medical image collections for research is the lack of infrastructure for automated data annotation. Among all imaging modalities, annotation of magnetic resonance (MR) images is particularly challenging due to the non-standard labeling of MR image types. In this work, we aimed to train a deep neural network to annotate MR image sequence type for scans of brain tumor patients. We focused on the four most common MR sequence types within neuroimaging: T1-weighted (T1W), T1-weighted post-gadolinium contrast (T1Gd), T2-weighted (T2W), and T2-weighted fluid-attenuated inversion recovery (FLAIR). Our repository contains images acquired using a variety of pulse sequences, sequence parameters, field strengths, and scanner manufacturers. Image selection was agnostic to patient demographics, diagnosis, and the presence of tumor in the imaging field of view. We used a total of 14,400 two-dimensional images, each visualizing a different part of the brain. Data was split into train, validation, and test sets (9600, 2400, and 2400 images, respectively) and sets consisted of equal-sized groups of image types. Overall, the model reached an accuracy of 99% on the test set. Our results showed excellent performance of deep learning techniques in predicting sequence types for brain tumor MR images. We conclude deep learning models can serve as tools to support clinical research and facilitate efficient database management.


Asunto(s)
Neoplasias Encefálicas , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Neoplasias Encefálicas/diagnóstico por imagen , Humanos , Redes Neurales de la Computación
10.
Sci Rep ; 9(1): 10063, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31296889

RESUMEN

Glioblastoma (GBM) is a heterogeneous and lethal brain cancer. These tumors are followed using magnetic resonance imaging (MRI), which is unable to precisely identify tumor cell invasion, impairing effective surgery and radiation planning. We present a novel hybrid model, based on multiparametric intensities, which combines machine learning (ML) with a mechanistic model of tumor growth to provide spatially resolved tumor cell density predictions. The ML component is an imaging data-driven graph-based semi-supervised learning model and we use the Proliferation-Invasion (PI) mechanistic tumor growth model. We thus refer to the hybrid model as the ML-PI model. The hybrid model was trained using 82 image-localized biopsies from 18 primary GBM patients with pre-operative MRI using a leave-one-patient-out cross validation framework. A Relief algorithm was developed to quantify relative contributions from the data sources. The ML-PI model statistically significantly outperformed (p < 0.001) both individual models, ML and PI, achieving a mean absolute predicted error (MAPE) of 0.106 ± 0.125 versus 0.199 ± 0.186 (ML) and 0.227 ± 0.215 (PI), respectively. Associated Pearson correlation coefficients for ML-PI, ML, and PI were 0.838, 0.518, and 0.437, respectively. The Relief algorithm showed the PI model had the greatest contribution to the result, emphasizing the importance of the hybrid model in achieving the high accuracy.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Glioblastoma/diagnóstico por imagen , Imágenes de Resonancia Magnética Multiparamétrica/métodos , Algoritmos , Recuento de Células , Humanos , Interpretación de Imagen Asistida por Computador , Aprendizaje Automático , Modelos Estadísticos , Modelos Teóricos , Pronóstico
11.
Am J Clin Oncol ; 42(8): 655-661, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31343422

RESUMEN

Although glioblastoma (GBM) is a fatal primary brain cancer with short median survival of 15 months, a small number of patients survive >5 years after diagnosis; they are known as extreme survivors (ES). Because of their rarity, very little is known about what differentiates these outliers from other patients with GBM. For the purpose of identifying unknown drivers of extreme survivorship in GBM, the ENDURES consortium (ENvironmental Dynamics Underlying Responsive Extreme Survivors of GBM) was developed. This consortium is a multicenter collaborative network of investigators focused on the integration of multiple types of clinical data and the creation of patient-specific models of tumor growth informed by radiographic and histologic parameters. Leveraging our combined resources, the goals of the ENDURES consortium are 2-fold: (1) to build a curated, searchable, multilayered repository housing clinical and outcome data on a large cohort of ES patients with GBM; and (2) to leverage the ENDURES repository for new insights into tumor behavior and novel targets for prolonging survival for all patients with GBM. In this article, the authors review the available literature and discuss what is already known about ES. The authors then describe the creation of their consortium and some preliminary results.


Asunto(s)
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Sistema de Registros , Anciano , Neoplasias Encefálicas/patología , Femenino , Glioblastoma/patología , Humanos , Gestión de la Información , Comunicación Interdisciplinaria , Colaboración Intersectorial , Masculino , Persona de Mediana Edad , Sistema de Registros/normas , Tasa de Supervivencia
12.
Math Biosci ; 312: 59-66, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31009624

RESUMEN

Kinetic parameter estimates for mathematical models of glioblastoma multiforme (GBM), derived from clinical scans, have been used to predict the occurrence of hypoxia, necrosis, response to radiation therapy, and overall survival. Modeling GBM growth in a cerebral model encounters anatomical boundaries that interfere with model calibration from clinical measurements. METHODS: The effect of boundaries is examined on both spherically symmetric and anatomical models of tumor growth. This effect is incorporated into a method that updates kinetic parameters. The efficacy of this method in reproducing clinical image-derived subject data is evaluated. RESULTS: Spherically symmetric simulations of tumor growth with simple boundaries behave predictably when in a linear phase of growth. Anatomic simulations of eleven out of twenty subjects demonstrated improved fit to subject data with the new method. When only subjects exhibiting linear growth are considered, eight out of nine subject demonstrate improved fit to the data. CONCLUSION: Anatomical boundaries to tumor growth measurably deflect progression and affect estimates of kinetic parameters. The presented method reliably updates kinetic parameters to fit anatomic computational models to clinically derived subject data when those data are in a linear regime.


Asunto(s)
Neoplasias Encefálicas/patología , Glioblastoma/patología , Modelos Biológicos , Neoplasias Encefálicas/diagnóstico , Glioblastoma/diagnóstico , Humanos , Pronóstico
13.
Tomography ; 5(1): 135-144, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30854451

RESUMEN

Standard-of-care multiparameter magnetic resonance imaging (MRI) scans of the brain were used to objectively subdivide glioblastoma multiforme (GBM) tumors into regions that correspond to variations in blood flow, interstitial edema, and cellular density. We hypothesized that the distribution of these distinct tumor ecological "habitats" at the time of presentation will impact the course of the disease. We retrospectively analyzed initial MRI scans in 2 groups of patients diagnosed with GBM, a long-term survival group comprising subjects who survived >36 month postdiagnosis, and a short-term survival group comprising subjects who survived ≤19 month postdiagnosis. The single-institution discovery cohort contained 22 subjects in each group, while the multi-institution validation cohort contained 15 subjects per group. MRI voxel intensities were calibrated, and tumor voxels clustered on contrast-enhanced T1-weighted and fluid-attenuated inversion-recovery (FLAIR) images into 6 distinct "habitats" based on low- to medium- to high-contrast enhancement and low-high signal on FLAIR scans. Habitat 6 (high signal on calibrated contrast-enhanced T1-weighted and FLAIR sequences) comprised a significantly higher volume fraction of tumors in the long-term survival group (discovery cohort, 35% ± 6.5%; validation cohort, 34% ± 4.8%) compared with tumors in the short-term survival group (discovery cohort, 17% ± 4.5%, P < .03; validation cohort, 16 ± 4.0%, P < .007). Of the 6 distinct MRI-defined habitats, the fractional tumor volume of habitat 6 at diagnosis was significantly predictive of long- or short-term survival. We discuss a possible mechanistic basis for this association and implications for habitat-driven adaptive therapy of GBM.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Glioblastoma/diagnóstico por imagen , Adulto , Anciano , Neoplasias Encefálicas/patología , Medios de Contraste , Femenino , Glioblastoma/patología , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Estimación de Kaplan-Meier , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Pronóstico , Estudios Retrospectivos , Adulto Joven
14.
Nat Commun ; 9(1): 4904, 2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-30464169

RESUMEN

Therapeutic options for the treatment of glioblastoma remain inadequate despite concerted research efforts in drug development. Therapeutic failure can result from poor permeability of the blood-brain barrier, heterogeneous drug distribution, and development of resistance. Elucidation of relationships among such parameters could enable the development of predictive models of drug response in patients and inform drug development. Complementary analyses were applied to a glioblastoma patient-derived xenograft model in order to quantitatively map distribution and resulting cellular response to the EGFR inhibitor erlotinib. Mass spectrometry images of erlotinib were registered to histology and magnetic resonance images in order to correlate drug distribution with tumor characteristics. Phosphoproteomics and immunohistochemistry were used to assess protein signaling in response to drug, and integrated with transcriptional response using mRNA sequencing. This comprehensive dataset provides simultaneous insight into pharmacokinetics and pharmacodynamics and indicates that erlotinib delivery to intracranial tumors is insufficient to inhibit EGFR tyrosine kinase signaling.


Asunto(s)
Antineoplásicos/farmacocinética , Clorhidrato de Erlotinib/farmacocinética , Glioblastoma/tratamiento farmacológico , Animales , Antineoplásicos/administración & dosificación , Receptores ErbB/antagonistas & inhibidores , Clorhidrato de Erlotinib/administración & dosificación , Femenino , Imagen por Resonancia Magnética , Ratones Desnudos , Trasplante de Neoplasias , Proteínas Tirosina Quinasas/metabolismo , Análisis de Secuencia de ARN , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
15.
Bull Math Biol ; 77(5): 846-56, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25795318

RESUMEN

Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor associated with a poor median survival of 15-18 months, yet there is wide heterogeneity across and within patients. This heterogeneity has been the source of significant clinical challenges facing patients with GBM and has hampered the drive toward more precision or personalized medicine approaches to treating these challenging tumors. Over the last two decades, the field of Mathematical Neuro-oncology has grown out of desire to use (often patient-specific) mathematical modeling to better treat GBMs. Here, we will focus on a series of clinically relevant results using patient-specific mathematical modeling. The core model at the center of these results incorporates two hallmark features of GBM, proliferation [Formula: see text] and invasion (D), as key parameters. Based on routinely obtained magnetic resonance images, each patient's tumor can be characterized using these two parameters. The Proliferation-Invasion (PI) model uses [Formula: see text] and D to create patient-specific growth predictions. The PI model, its predictions, and parameters have been used in a number of ways to derive biological insight. Beyond predicting growth, the PI model has been utilized to identify patients who benefit from different surgery strategies, to prognosticate response to radiation therapy, to develop a treatment response metric, and to connect clinical imaging features and genetic information. Demonstration of the PI model's clinical relevance supports the growing role for it and other mathematical models in routine clinical practice.


Asunto(s)
Neoplasias Encefálicas/patología , Glioblastoma/patología , Modelos Biológicos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Proliferación Celular , Glioblastoma/genética , Glioblastoma/terapia , Humanos , Conceptos Matemáticos , Mutación , Invasividad Neoplásica , Medicina de Precisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...