Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; 41(24): 15691-15714, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36970840

RESUMEN

Bacterial flagellar system (BFS) was the primary example of a purported 'rotary-motor' functionality in a natural assembly. This mandates the translation of a circular motion of components inside into a linear displacement of the cell body outside, which is supposedly orchestrated with the following features of the BFS: (i) A chemical/electrical differential generates proton motive force (pmf, including a trans-membrane potential, TMP), which is electro-mechanically transduced by inward movement of protons via BFS. (ii) Membrane-bound proteins of BFS serve as stators and the slender filament acts as an external propeller, culminating into a hook-rod that pierces the membrane to connect to a 'broader assembly of deterministically movable rotor'. We had disclaimed the purported pmf/TMP-based respiratory/photosynthetic physiology involving Complex V, which was also perceived as a 'rotary machine' earlier. We pointed out that the murburn redox logic was operative therein. We pursue the following similar perspectives in BFS-context: (i) Low probability for the evolutionary attainment of an ordered/synchronized teaming of about two dozen types of proteins (assembled across five-seven distinct phases) towards the singular agendum of rotary motility. (ii) Vital redox activity (not the gambit of pmf/TMP!) powers the molecular and macroscopic activities of cells, including flagella. (iii) Flagellar movement is noted even in ambiances lacking/countering the directionality mandates sought by pmf/TMP. (iv) Structural features of BFS lack component(s) capable of harnessing/achieving pmf/TMP and functional rotation. A viable murburn model for conversion of molecular/biochemical activity into macroscopic/mechanical outcomes is proposed herein for understanding BFS-assisted motility. HIGHLIGHTSThe motor-like functionalism of bacterial flagellar system (BFS) is analyzedProton/Ion-differential based powering of BFS is unviable in bacteriaUncouplers-sponsored effects were misinterpreted, resulting in a detour in BFS researchThese findings mandate new explanation for nano-bio-mechanical movements in BFSA minimalist murburn model for the bacterial flagella-aided movement is proposedCommunicated by Ramaswamy H. Sarma.


Asunto(s)
Bacterias , Flagelos , Bacterias/metabolismo , Flagelos/química , Flagelos/metabolismo , Fuerza Protón-Motriz , Protones , Proteínas Bacterianas/metabolismo
2.
J Biomol Struct Dyn ; 40(19): 8783-8795, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33998971

RESUMEN

Blood hemoglobin (Hb), known to transport oxygen, is the most abundant globular protein in humans. Erythrocytes have ∼10-3 M concentration of ATP in steady-state and we estimate that this high amounts cannot be formed from 10-4 - 10-7 M levels of precursors via substrate-level phosphorylation of glycolysis. To account for this discrepancy, we propose that Hb serves as a 'murzyme' (a redox enzyme working along the principles of murburn concept), catalyzing the synthesis of the major amounts of ATP found in erythrocytes. This proposal is along the lines of our earlier works demonstrating DROS (diffusible reactive oxygen species) mediated ATP-synthesis as a thermodynamically and kinetically viable mechanism for physiological oxidative phosphorylation. We support the new hypothesis for Hb with theoretical arguments, experimental findings of reputed peers and in silico explorations. Using in silico methods, we demonstrate that adenosine nucleotide and 2,3-bisphosphoglycerate (2,3-BPG) binding sites are located suitably on the monomer/tetramer, thereby availing facile access to the superoxide emanating from the heme center. Our proposal explains earlier reported in situ experimental findings/suggestions of 2,3-BPG and ADP binding at the same locus on Hb. The binding energy is in the order of 2,3-BPG > NADH > ATP > ADP > AMP and agrees with earlier reports, potentially explaining the bioenergetic physiology of erythrocytes. Also, the newly discovered site for 2,3-BPG shows lower affinity in fetal Hb (as compared to adults) explaining oxygen transfer from mother to embryo. The findings pose significant implications in routine physiology and pathologies like sickle cell anemia and thalassemia.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Eritrocitos , Hemoglobinas , Humanos , Hemoglobinas/metabolismo , Eritrocitos/metabolismo , Fosforilación Oxidativa , Oxígeno/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo
3.
J Biomol Struct Dyn ; 40(21): 10997-11023, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34323659

RESUMEN

HIGHLIGHTS: Contemporary beliefs on oxygenic photosynthesis are critiqued.Murburn model is suggested as an alternative explanation.In the new model, diffusible reactive species are the main protagonists.All pigments are deemed photo-redox active in the new stochastic mechanism.NADPH synthesis occurs via simple electron transfers, not via elaborate ETC.Oxygenesis is delocalized and not just centered at Mn-Complex.Energetics of murburn proposal for photophosphorylation is provided.The proposal ushers in a paradigm shift in photosynthesis research.


Asunto(s)
Adenosina Trifosfato , Oxígeno , Adenosina Trifosfato/metabolismo , Fotosíntesis , Transporte de Electrón , Oxidación-Reducción
4.
J Biomol Struct Dyn ; 40(21): 11024-11056, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34328391

RESUMEN

In this second half of our treatise on oxygenic photosynthesis, we provide support for the murburn model of the light reaction of photosynthesis and ratify key predictions made in the first part. Molecular docking and visualization of various ligands of quinones/quinols (and their derivatives) with PS II/Cytochrome b6f complexes did not support chartered 2e-transport role of quinols. A broad variety of herbicides did not show any affinity/binding-based rationales for inhibition of photosynthesis. We substantiate the proposal that disubstituted phenolics (perceived as protonophores/uncouplers or affinity-based inhibitors in the classical purview) serve as interfacial modulators of diffusible reactive (oxygen) species or DR(O)S. The DRS-based murburn model is evidenced by the identification of multiple ADP-binding sites on the extra-membraneous projection of protein complexes and structure/distribution of the photo/redox catalysts. With a panoramic comparison of the redox metabolic machinery across diverse organellar/cellular systems, we highlight the ubiquitous one-electron murburn facets (cofactors of porphyrin, flavin, FeS, other metal centers and photo/redox active pigments) that enable a facile harnessing of the utility of DRS. In the summative analyses, it is demonstrated that the murburn model of light reaction explains the structures of membrane supercomplexes recently observed in thylakoids and also accounts for several photodynamic experimental observations and evolutionary considerations. In toto, the work provides a new orientation and impetus to photosynthesis research. Communicated by Ramaswamy H. Sarma.


Asunto(s)
Hidroquinonas , Oxígeno , Oxígeno/metabolismo , Ligandos , Simulación del Acoplamiento Molecular , Complejo de Citocromo b6f/metabolismo , Especies Reactivas de Oxígeno/metabolismo
5.
Biomol Concepts ; 11(1): 32-56, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32187011

RESUMEN

The inefficiency of cyanide/HCN (CN) binding with heme proteins (under physiological regimes) is demonstrated with an assessment of thermodynamics, kinetics, and inhibition constants. The acute onset of toxicity and CN's mg/Kg LD50 (µM lethal concentration) suggests that the classical hemeFe binding-based inhibition rationale is untenable to account for the toxicity of CN. In vitro mechanistic probing of CN-mediated inhibition of hemeFe reductionist systems was explored as a murburn model for mitochondrial oxidative phosphorylation (mOxPhos). The effect of CN in haloperoxidase catalyzed chlorine moiety transfer to small organics was considered as an analogous probe for phosphate group transfer in mOxPhos. Similarly, inclusion of CN in peroxidase-catalase mediated one-electron oxidation of small organics was used to explore electron transfer outcomes in mOxPhos, leading to water formation. The free energy correlations from a Hammett study and IC50/Hill slopes analyses and comparison with ligands ( CO/ H 2 S/ N 3 - ) $\left( {\text{CO}}/{{{{\text{H}}_{2}}\text{S}}/{\text{N}_{3}^{\text{-}}}\;}\; \right)$ provide insights into the involvement of diffusible radicals and proton-equilibriums, explaining analogous outcomes in mOxPhos chemistry. Further, we demonstrate that superoxide (diffusible reactive oxygen species, DROS) enables in vitro ATP synthesis from ADP+phosphate, and show that this reaction is inhibited by CN. Therefore, practically instantaneous CN ion-radical interactions with DROS in matrix catalytically disrupt mOxPhos, explaining the acute lethal effect of CN.


Asunto(s)
Cianuros/toxicidad , Hemo/química , Hemoproteínas/antagonistas & inhibidores , Hemoglobinas/antagonistas & inhibidores , Mitocondrias/efectos de los fármacos , Adenosina Trifosfato/biosíntesis , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Sitios de Unión , Catalasa/metabolismo , Catálisis , Respiración de la Célula/efectos de los fármacos , Respiración de la Célula/fisiología , Cloruro Peroxidasa/química , Cianuros/química , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/metabolismo , Hemo/antagonistas & inhibidores , Hemo/metabolismo , Hemoproteínas/química , Hemoproteínas/metabolismo , Hemoglobinas/química , Peroxidasa de Rábano Silvestre/metabolismo , Hidróxidos/química , Cinética , Ligandos , Mitocondrias/química , Mitocondrias/enzimología , Mitocondrias/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Estirenos/química , Estirenos/farmacología , Superóxidos/química , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...