Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hered ; 113(6): 712-721, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36107789

RESUMEN

Sandblossoms, Linanthus parryae is a widespread annual plant species found in washes and sandy open habitats across the Mojave Desert and Eastern Sierra Nevada of California. Studies in this species have played a central role in evolutionary biology, serving as the first test cases of the shifting balance theory of evolution, models of isolation by distance, and metrics to describe the genetic structure of natural populations. Despite the importance of L. parryae in the development of landscape genetics and phylogeography, there are no genomic resources available for the species. Through the California Conservation Genomics Project, we assembled the first genome in the genus Linanthus. Using PacBio HiFi long reads and Hi-C chromatin conformation capture, we assembled 123 scaffolds spanning 1.51 Gb of the 1.96 Gb estimated genome, with a contig N50 of 18.7 Mb and a scaffold N50 of 124.8 Mb. This assembly, with a BUSCO completeness score of 88.7%, will allow us to revisit foundational ideas central to our understanding of how evolutionary forces operate in a geographic landscape. In addition, it will be a new resource to uncover adaptations to arid environments in the fragile desert habitat threatened by urban and solar farm development, climate change, and off-road vehicles.


Asunto(s)
Adaptación Fisiológica , Genoma , Genómica , Cromosomas
2.
Sci Rep ; 11(1): 24013, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34907249

RESUMEN

What we mean by species and whether they have any biological reality has been debated since the early days of evolutionary biology. Some biologists even suggest that plant species are created by taxonomists as a subjective, artificial division of nature. However, the nature of plant species has been rarely tested critically with data while ignoring taxonomy. We integrate phenomic and genomic data collected across hundreds of individuals at a continental scale to investigate this question in Escallonia (Escalloniaceae), a group of plants which includes 40 taxonomic species (the species proposed by taxonomists). We first show that taxonomic species may be questionable as they match poorly to patterns of phenotypic and genetic variation displayed by individuals collected in nature. We then use explicit statistical methods for species delimitation designed for phenotypic and genomic data, and show that plant species do exist in Escallonia as an objective, discrete property of nature independent of taxonomy. We show that such species correspond poorly to current taxonomic species ([Formula: see text]) and that phenomic and genomic data seldom delimit congruent entities ([Formula: see text]). These discrepancies suggest that evolutionary forces additional to gene flow can maintain the cohesion of species. We propose that phenomic and genomic data analyzed on an equal footing build a broader perspective on the nature of plant species by helping delineate different 'types of species'. Our results caution studies which take the accuracy of taxonomic species for granted and challenge the notion of plant species without empirical evidence. Note: A version of the complete manuscript in Spanish is available in the Supplemental Materials.


Asunto(s)
Evolución Molecular , Genómica , Magnoliopsida/clasificación , Magnoliopsida/genética , Filogenia , Especificidad de la Especie
3.
PLoS One ; 14(8): e0220746, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31408475

RESUMEN

Knowledge of genetic diversity and population structure is critical for conservation and management planning at the population level within a species' range. Many brown bear populations in Central Asia are small and geographically isolated, yet their phylogeographic relationships, genetic diversity, and contemporary connectivity are poorly understood. To address this knowledge gap, we collected brown bear samples from the Gobi Desert (n = 2360), Altai, Sayan, Khentii, and Ikh Khyangan mountains of Mongolia (n = 79), and Deosai National Park in the Himalayan Mountain Range of Pakistan (n = 5) and generated 927 base pairs of mitochondrial DNA (mtDNA) sequence data and genotypes at 13 nuclear DNA microsatellite loci. We documented high levels of mtDNA and nDNA diversity in the brown bear populations of northern Mongolia (Altai, Sayan, Buteeliin nuruu and Khentii), but substantially lower diversity in brown bear populations in the Gobi Desert and Himalayas of Pakistan. We detected 3 brown bear mtDNA phylogeographic groups among bears of the region, with clade 3a1 in Sayan, Khentii, and Buteeliin nuruu mountains, clade 3b in Altai, Sayan, Buteeliin nuruu, Khentii, and Ikh Khyangan, and clade 6 in Gobi and Pakistan. Our results also clarified the phylogenetic relationships and divergence times with other brown bear mtDNA clades around the world. The nDNA genetic structure analyses revealed distinctiveness of Gobi bears and different population subdivisions compared to mtDNA results. For example, genetic distance for nDNA microsatellite loci between the bears in Gobi and Altai (FST = 0.147) was less than that of the Gobi and Pakistan (FST = 0.308) suggesting more recent male-mediated nuclear gene flow between Gobi and Altai than between Gobi and the Pakistan bears. Our results provide valuable information for conservation and management of bears in this understudied region of Central Asia and highlight the need for special protection and additional research on Gobi brown bears.


Asunto(s)
Ursidae/genética , Animales , Asia , ADN Mitocondrial/genética , Femenino , Variación Genética/genética , Masculino , Repeticiones de Microsatélite/genética , Filogeografía
4.
PeerJ ; 7: e7090, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31259097

RESUMEN

Robustly delimited species are of paramount importance, the identification of which relies on our ability to discern boundaries between one species and the next. This is not difficult to do when species are very distinct from one another. However, in recently evolved lineages where putative species may have relatively few diagnostic features (e.g., species complexes composed of very similar species, the boundaries between which are often unclear), defining species boundaries can be more challenging. Hence, the field of species delimitation has widely advocated the use of multiple lines of evidence to delimit species, particularly in species complexes. Excessive taxonomic confusion, often the result of species descriptions that shift through time (e.g., during revisionary work and regional treatments), can further complicate the search for diagnostic features in species complexes. Here, as a first step in robustly delimiting species boundaries, we quantify and describe morphological variation in the Castilleja pilosa species complex. We first infer the morphospace of the species complex and use fuzzy-clustering techniques to explore the morphological variation in the system. Next, we hypothesize the position of type specimens within that morphospace. In so doing, we aim to visualize the impact that regional treatments have had on the conceptualization of taxa through time. We find that there is limited morphological variation among members of this complex, and we determine that the morphological concept of these species have shifted through time and are no longer accurately represented by species descriptions.

5.
J Aquat Anim Health ; 30(3): 201-209, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29799641

RESUMEN

In response to population declines of North American Burbot Lota lota maculosa (hereafter, Burbot), conservation aquaculture methods have been developed for this species. In general, Burbot are relatively resistant to many salmonid pathogens; however, cultured juvenile Burbot have experienced periodic epizootic disease outbreaks during production. A series of trials was conducted to determine the virulence of select bacteria isolated from juvenile Burbot after outbreaks that occurred in 2012 and 2013 at the University of Idaho's Aquaculture Research Institute. Initial clinical diagnostics and sampling resulted in the isolation of numerous putative bacterial pathogens. To determine which bacteria were the most likely causative agents contributing to these epizootics, juvenile Burbot received intraperitoneal (IP) injections of select bacteria in log-phase growth. Mortality associated with specific isolates was recorded, and more comprehensive challenges followed this initial screening. These challenges used side-by-side IP and immersion methods to expose Burbot to potential pathogens. The challenges resulted in significantly higher mortalities in fish after IP injection with two Aeromonas sp. isolates compared to controls, but no significant difference in mortality for immersion-challenged groups was observed. Results demonstrate that two Aeromonas sp. isolates cultured from the epizootics are virulent to Burbot.


Asunto(s)
Aeromonas/fisiología , Aeromonas/patogenicidad , Enfermedades de los Peces/microbiología , Gadiformes , Infecciones por Bacterias Gramnegativas/veterinaria , Aeromonas/aislamiento & purificación , Animales , Bacterias/aislamiento & purificación , Bacterias/patogenicidad , Enfermedades de los Peces/epidemiología , Infecciones por Bacterias Gramnegativas/epidemiología , Infecciones por Bacterias Gramnegativas/microbiología
6.
Mol Ecol ; 27(10): 2397-2413, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29701315

RESUMEN

Using multiple, independent approaches to molecular species delimitation is advocated to accommodate limitations and assumptions of a single approach. Incongruence in delimitation schemes is a potential by-product of employing multiple methods on the same data, and little attention has been paid to its reconciliation. Instead, a particular scheme is prioritized, and/or molecular delimitations are coupled with additional, independent lines of evidence that mitigate incongruence. We advocate that incongruence within a line of evidence should be accounted for before comparing across lines of evidence that can themselves be incongruent. Additionally, it is not uncommon for empiricists working in nonmodel systems to be data-limited, generating some concern for the adequacy of available data to address the question of interest. With conservation and management decisions often hinging on the status of species, it seems prudent to understand the capabilities of approaches we use given the data we have. Here, we apply two molecular species delimitation approaches, spedeSTEM and BPP, to the Castilleja ambigua (Orobanchaceae) species complex, a relatively young plant lineage in western North America. Upon finding incongruence in our delimitation, we employed a post hoc simulation study to examine the power of these approaches to delimit species. Given the data we collected, we find that spedeSTEM lacks the power to delimit while BPP is capable, thus allowing us to address incongruence before proceeding in delimitation. We suggest post hoc simulation studies like this compliment empirical delimitation and serve as a means of exploring conflict within a line of evidence and dealing with it appropriately.


Asunto(s)
Especiación Genética , Orobanchaceae/genética , Cloroplastos/genética , Simulación por Computador , Funciones de Verosimilitud , Orobanchaceae/clasificación , Filogenia , Especificidad de la Especie
7.
Appl Plant Sci ; 5(9)2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28989821

RESUMEN

PREMISE OF THE STUDY: Chloroplast primers were developed from genomic data for the taxonomically challenging genus Castilleja. We further tested the broader utility of these primers across Orobanchaceae, identifying a core set of chloroplast primers amplifying across the clade. METHODS AND RESULTS: Using a combination of three low-coverage Castilleja genomes and sequence data from 12 Castilleja plastomes, 76 primer combinations were specifically designed and tested for Castilleja. The primers targeted the most variable portions of the plastome and were validated for their applicability across the clade. Of these, 38 primer combinations were subsequently evaluated in silico and then validated across other major clades in Orobanchaceae. CONCLUSIONS: These results demonstrate the utility of these primers, not only across Castilleja, but for other clades in Orobanchaceae-particularly hemiparasitic lineages-and will contribute to future phylogenetic studies of this important clade of parasitic plants.

8.
Appl Plant Sci ; 5(9)2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28989822

RESUMEN

PREMISE OF THE STUDY: We developed primers targeting nuclear loci in Castilleja with the goal of reconstructing the evolutionary history of this challenging clade. These primers were tested across other major clades in Orobanchaceae to assess their broader utility. METHODS AND RESULTS: We assembled low-coverage genomes for three taxa in Castilleja and developed primer combinations for the single-copy conserved ortholog set (COSII) and the pentatricopeptide repeat (PPR) gene family. These primer combinations were designed to take advantage of the Fluidigm microfluidic PCR platform and are well suited for high-throughput sequencing applications. Eighty-seven primers were designed for Castilleja, and 27 were found to have broader utility in Orobanchaceae. CONCLUSIONS: These results demonstrate the utility of these primers, not only across Castilleja, but for other lineages within Orobanchaceae as well. This expanded molecular toolkit will be an asset to future phylogenetic studies in Castilleja and throughout Orobanchaceae.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...