Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38659787

RESUMEN

Bacteria often experience nutrient limitation in nature and the laboratory. While exponential and stationary growth phases are well characterized in the model bacterium Escherichia coli, little is known about what transpires inside individual cells during the transition between these two phases. Through quantitative cell imaging, we found that the position of nucleoids and cell division sites becomes increasingly asymmetric during transition phase. These asymmetries were coupled with spatial reorganization of proteins, ribosomes, and RNAs to nucleoid-centric localizations. Results from live-cell imaging experiments, complemented with genetic and 13C whole-cell nuclear magnetic resonance spectroscopy studies, show that preferential accumulation of the storage polymer glycogen at the old cell pole leads to the observed rearrangements and asymmetric divisions. In vitro experiments suggest that these phenotypes are likely due to the propensity of glycogen to phase separate in crowded environments, as glycogen condensates exclude fluorescent proteins under physiological crowding conditions. Glycogen-associated differences in cell sizes between strains and future daughter cells suggest that glycogen phase separation allows cells to store large glucose reserves without counting them as cytoplasmic space.

2.
Cell ; 187(2): 228-234, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38242080

RESUMEN

This personal story recounts the accidental observation, the struggles, the breakthroughs, and the collaborative spirit of a few individuals that led to the discovery that bacterial cells expend energy to effectively fluidize their otherwise "glass-like" cytoplasm and promote the dispersal of large cytoplasmic components. This adventure, which led us into an uncharted world at the intersection of cell biology and condensed matter physics about ten years ago, forever transformed the way I view cells and conduct research.


Asunto(s)
Bacterias , Citoplasma , Humanos , Citosol , Bacterias/citología
3.
Cell Chem Biol ; 31(3): 465-476.e12, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-37918401

RESUMEN

Conventional antimicrobial discovery relies on targeting essential enzymes in pathogenic organisms, contributing to a paucity of new antibiotics to address resistant strains. Here, by targeting a non-essential enzyme, Borrelia burgdorferi HtpG, to deliver lethal payloads, we expand what can be considered druggable within any pathogen. We synthesized HS-291, an HtpG inhibitor tethered to the photoactive toxin verteporfin. Reactive oxygen species, generated by light, enables HS-291 to sterilize Borrelia cultures by causing oxidation of HtpG, and a discrete subset of proteins in proximity to the chaperone. This caused irreversible nucleoid collapse and membrane blebbing. Tethering verteporfin to the HtpG inhibitor was essential, since free verteporfin was not retained by Borrelia in contrast to HS-291. For this reason, we liken HS-291 to a berserker, wreaking havoc upon the pathogen's biology once selectively absorbed and activated. This strategy expands the druggable pathogenic genome and offsets antibiotic resistance by targeting non-essential proteins.


Asunto(s)
Borrelia burgdorferi , Borrelia burgdorferi/genética , Borrelia burgdorferi/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Verteporfina/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Chaperonas Moleculares/metabolismo
4.
Cell Syst ; 15(1): 19-36.e5, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38157847

RESUMEN

To examine how bacteria achieve robust cell proliferation across diverse conditions, we developed a method that quantifies 77 cell morphological, cell cycle, and growth phenotypes of a fluorescently labeled Escherichia coli strain and >800 gene deletion derivatives under multiple nutrient conditions. This approach revealed extensive phenotypic plasticity and deviating mutant phenotypes were often nutrient dependent. From this broad phenotypic landscape emerged simple and robust unifying rules (laws) that connect DNA replication initiation, nucleoid segregation, FtsZ ring formation, and cell constriction to specific aspects of cell size (volume, length, or added length) at the population level. Furthermore, completion of cell division followed the initiation of cell constriction after a constant time delay across strains and nutrient conditions, identifying cell constriction as a key control point for cell size determination. Our work provides a population-level description of the governing principles by which E. coli integrates cell cycle processes and growth rate with cell size to achieve its robust proliferative capability. A record of this paper's transparent peer review process is included in the supplemental information.


Asunto(s)
Proteínas Bacterianas , Escherichia coli , Escherichia coli/metabolismo , Proteínas Bacterianas/metabolismo , Cromosomas Bacterianos/genética , Cromosomas Bacterianos/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Ciclo Celular/genética , División Celular
6.
PLoS Genet ; 19(7): e1010857, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37494383

RESUMEN

Borrelia burgdorferi, a causative agent of Lyme disease, contains the most segmented bacterial genome known to date, with one linear chromosome and over twenty plasmids. How this unusually complex genome is organized, and whether and how the different replicons interact are unclear. We recently demonstrated that B. burgdorferi is polyploid and that the copies of the chromosome and plasmids are regularly spaced in each cell, which is critical for faithful segregation of the genome to daughter cells. Regular spacing of the chromosome is controlled by two separate partitioning systems that involve the protein pairs ParA/ParZ and ParB/Smc. Here, using chromosome conformation capture (Hi-C), we characterized the organization of the B. burgdorferi genome and the interactions between the replicons. We uncovered that although the linear chromosome lacks contacts between the two replication arms, the two telomeres are in frequent contact. Moreover, several plasmids specifically interact with the chromosome oriC region, and a subset of plasmids interact with each other more than with others. We found that Smc and the Smc-like MksB protein mediate long-range interactions on the chromosome, but they minimally affect plasmid-chromosome or plasmid-plasmid interactions. Finally, we found that disruption of the two partition systems leads to chromosome restructuring, correlating with the mis-positioning of chromosome oriC. Altogether, this study revealed the conformation of a complex genome and analyzed the contribution of the partition systems and SMC family proteins to this organization. This work expands the understanding of the organization and maintenance of multipartite bacterial genomes.


Asunto(s)
Borrelia burgdorferi , Borrelia burgdorferi/genética , Plásmidos/genética , Replicón/genética , Genoma Bacteriano , Telómero , Proteínas Bacterianas/genética , ADN Bacteriano/genética
7.
bioRxiv ; 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37066390

RESUMEN

Borrelia burgdorferi , a causative agent of Lyme disease, contains the most segmented bacterial genome known to date, with one linear chromosome and over twenty plasmids. How this unusually complex genome is organized, and whether and how the different replicons interact are unclear. We recently demonstrated that B. burgdorferi is polyploid and that the copies of the chromosome and plasmids are regularly spaced in each cell, which is critical for faithful segregation of the genome to daughter cells. Regular spacing of the chromosome is controlled by two separate partitioning systems that involve the protein pairs ParA/ParZ and ParB/SMC. Here, using chromosome conformation capture (Hi-C), we characterized the organization of the B. burgdorferi genome and the interactions between the replicons. We uncovered that although the linear chromosome lacks contacts between the two replication arms, the two telomeres are in frequent contact. Moreover, several plasmids specifically interact with the chromosome oriC region, and a subset of plasmids interact with each other more than with others. We found that SMC and the SMC-like MksB protein mediate long-range interactions on the chromosome, but they minimally affect plasmid-chromosome or plasmid-plasmid interactions. Finally, we found that disruption of the two partition systems leads to chromosome restructuring, correlating with the mis-positioning of chromosome oriC . Altogether, this study revealed the conformation of a complex genome and analyzed the contribution of the partition systems and SMC family proteins to this organization. This work expands the understanding of the organization and maintenance of multipartite bacterial genomes.

8.
PLoS One ; 17(11): e0278151, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36441794

RESUMEN

The spirochete Borrelia burgdorferi, which causes Lyme disease, has the most segmented genome among known bacteria. In addition to a linear chromosome, the B. burgdorferi genome contains over 20 linear and circular endogenous plasmids. While many of these plasmids are dispensable under in vitro culture conditions, they are maintained during the natural life cycle of the pathogen. Plasmid-encoded functions are required for colonization of the tick vector, transmission to the vertebrate host, and evasion of host immune defenses. Different Borrelia strains can vary substantially in the type of plasmids they carry. The gene composition within the same type of plasmid can also differ from strain to strain, impeding the inference of plasmid function from one strain to another. To facilitate the investigation of the role of specific B. burgdorferi plasmids, we developed a Cas9-based approach that targets a plasmid for removal. As a proof-of-principle, we showed that targeting wild-type Cas9 to several loci on the endogenous plasmids lp25 or lp28-1 of the B. burgdorferi type strain B31 results in sgRNA-specific plasmid loss even when homologous sequences (i.e., potential sequence donors for DNA recombination) are present nearby. Cas9 nickase versions, Cas9D10A or Cas9H840A, also cause plasmid loss, though not as robustly. Thus, sgRNA-directed Cas9 DNA cleavage provides a highly efficient way to eliminate B. burgdorferi endogenous plasmids that are non-essential in axenic culture.


Asunto(s)
Borrelia burgdorferi , Borrelia , Enfermedad de Lyme , Humanos , Borrelia burgdorferi/genética , Sistemas CRISPR-Cas/genética , Plásmidos/genética
9.
Nat Commun ; 13(1): 7173, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36450725

RESUMEN

Borrelia burgdorferi, the tick-transmitted spirochete agent of Lyme disease, has a highly segmented genome with a linear chromosome and various linear or circular plasmids. Here, by imaging several chromosomal loci and 16 distinct plasmids, we show that B. burgdorferi is polyploid during growth in culture and that the number of genome copies decreases during stationary phase. B. burgdorferi is also polyploid inside fed ticks and chromosome copies are regularly spaced along the spirochete's length in both growing cultures and ticks. This patterning involves the conserved DNA partitioning protein ParA whose localization is controlled by a potentially phage-derived protein, ParZ, instead of its usual partner ParB. ParZ binds its own coding region and acts as a centromere-binding protein. While ParA works with ParZ, ParB controls the localization of the condensin, SMC. Together, the ParA/ParZ and ParB/SMC pairs ensure faithful chromosome inheritance. Our findings underscore the plasticity of cellular functions, even those as fundamental as chromosome segregation.


Asunto(s)
Borrelia burgdorferi , Enfermedad de Lyme , Humanos , Borrelia burgdorferi/genética , Poliploidía , ADN , Enfermedad de Lyme/genética , Segregación Cromosómica
10.
Curr Biol ; 32(18): 3911-3924.e4, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-35961315

RESUMEN

Adenosine triphosphate (ATP) is an abundant and essential metabolite that cells consume and regenerate in large amounts to support growth. Although numerous studies have inferred the intracellular concentration of ATP in bacterial cultures, what happens in individual bacterial cells under stable growth conditions is less clear. Here, we use the QUEEN-2m biosensor to quantify ATP dynamics in single Escherichia coli cells in relation to their growth rate, metabolism, cell cycle, and cell lineage. We find that ATP dynamics are more complex than expected from population studies and are associated with growth-rate variability. Under stable nutrient-rich condition, cells can display large fluctuations in ATP level that are partially coordinated with the cell cycle. Abrogation of aerobic acetate fermentation (overflow metabolism) through genetic deletion considerably reduces both the amplitude of ATP level fluctuations and the cell-cycle trend. Similarly, growth in media in which acetate fermentation is lower or absent results in the reduction of ATP level fluctuation and cell-cycle trend. This suggests that overflow metabolism exhibits temporal dynamics, which contributes to fluctuating ATP levels during growth. Remarkably, at the single-cell level, growth rate negatively correlates with the amplitude of ATP fluctuation for each tested condition, linking ATP dynamics to growth-rate heterogeneity in clonal populations. Our work highlights the importance of single-cell analysis in studying metabolism and its implication to phenotypic diversity and cell growth.


Asunto(s)
Adenosina Trifosfato , Escherichia coli , Acetatos/metabolismo , Adenosina Trifosfato/metabolismo , Ciclo Celular , Fermentación
11.
Curr Biol ; 31(16): 3586-3600.e11, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34242576

RESUMEN

Microtubules are polarized intracellular polymers that play key roles in the cell, including in transport, polarity, and cell division. Across eukaryotic cell types, microtubules adopt diverse intracellular organization to accommodate these distinct functions coordinated by specific cellular sites called microtubule-organizing centers (MTOCs). Over 50 years of research on MTOC biology has focused mainly on the centrosome; however, most differentiated cells employ non-centrosomal MTOCs (ncMTOCs) to organize their microtubules into diverse arrays, which are critical to cell function. To identify essential ncMTOC components, we developed the biotin ligase-based, proximity-labeling approach TurboID for use in C. elegans. We identified proteins proximal to the microtubule minus end protein PTRN-1/Patronin at the apical ncMTOC of intestinal epithelial cells, focusing on two conserved proteins: spectraplakin protein VAB-10B/MACF1 and WDR-62, a protein we identify as homologous to vertebrate primary microcephaly disease protein WDR62. VAB-10B and WDR-62 do not associate with the centrosome and instead specifically regulate non-centrosomal microtubules and the apical targeting of microtubule minus-end proteins. Depletion of VAB-10B resulted in microtubule mislocalization and delayed localization of a microtubule nucleation complex É£-tubulin ring complex (γ-TuRC), while loss of WDR-62 decreased the number of dynamic microtubules and abolished γ-TuRC localization. This regulation occurs downstream of cell polarity and in conjunction with actin. As this is the first report for non-centrosomal roles of WDR62 family proteins, we expand the basic cell biological roles of this important disease protein. Our studies identify essential ncMTOC components and suggest a division of labor where microtubule growth and localization are distinctly regulated.


Asunto(s)
Caenorhabditis elegans , Centro Organizador de los Microtúbulos , Microtúbulos , Animales , Centrosoma , Proteínas del Citoesqueleto , Proteínas Asociadas a Microtúbulos , Tubulina (Proteína)
12.
Curr Biol ; 31(14): R882-R883, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34314707

RESUMEN

Interview with Christine Jacobs-Wagner, who studies the replication of bacterial cells at Stanford University.

13.
Cell ; 184(14): 3626-3642.e14, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34186018

RESUMEN

All cells fold their genomes, including bacterial cells, where the chromosome is compacted into a domain-organized meshwork called the nucleoid. How compaction and domain organization arise is not fully understood. Here, we describe a method to estimate the average mesh size of the nucleoid in Escherichia coli. Using nucleoid mesh size and DNA concentration estimates, we find that the cytoplasm behaves as a poor solvent for the chromosome when the cell is considered as a simple semidilute polymer solution. Monte Carlo simulations suggest that a poor solvent leads to chromosome compaction and DNA density heterogeneity (i.e., domain formation) at physiological DNA concentration. Fluorescence microscopy reveals that the heterogeneous DNA density negatively correlates with ribosome density within the nucleoid, consistent with cryoelectron tomography data. Drug experiments, together with past observations, suggest the hypothesis that RNAs contribute to the poor solvent effects, connecting chromosome compaction and domain formation to transcription and intracellular organization.


Asunto(s)
Cromosomas Bacterianos/química , Escherichia coli/metabolismo , Conformación de Ácido Nucleico , Solventes/química , Transcripción Genética , Aminoglicósidos/farmacología , Simulación por Computador , ADN Bacteriano/química , Difusión , Escherichia coli/efectos de los fármacos , Proteínas Fluorescentes Verdes/metabolismo , Tamaño de la Partícula , ARN Bacteriano/metabolismo , Ribosomas/metabolismo , Ribosomas/ultraestructura , Transcripción Genética/efectos de los fármacos
14.
Appl Environ Microbiol ; 87(4)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33257311

RESUMEN

The spirochete Borrelia burgdorferi causes Lyme disease, an increasingly prevalent infection. While previous studies have provided important insight into B. burgdorferi biology, many aspects, including basic cellular processes, remain underexplored. To help speed up the discovery process, we adapted a CRISPR interference (CRISPRi) platform for use in B. burgdorferi For efficiency and flexibility of use, we generated various CRISPRi template constructs that produce different basal and induced levels of dcas9 and carry different antibiotic resistance markers. We characterized the effectiveness of our CRISPRi platform by targeting the motility and cell morphogenesis genes flaB, mreB, rodA, and ftsI, whose native expression levels span two orders of magnitude. For all four genes, we obtained gene repression efficiencies of at least 95%. We showed by darkfield microscopy and cryo-electron tomography that flagellin (FlaB) depletion reduced the length and number of periplasmic flagella, which impaired cellular motility and resulted in cell straightening. Depletion of FtsI caused cell filamentation, implicating this protein in cell division in B. burgdorferi Finally, localized cell bulging in MreB- and RodA-depleted cells matched the locations of new peptidoglycan insertion specific to spirochetes of the Borrelia genus. These results therefore implicate MreB and RodA in the particular mode of cell wall elongation of these bacteria. Collectively, our results demonstrate the efficiency and ease of use of our B. burgdorferi CRISPRi platform, which should facilitate future genetic studies of this important pathogen.IMPORTANCE Gene function studies are facilitated by the availability of rapid and easy-to-use genetic tools. Homologous recombination-based methods traditionally used to genetically investigate gene function remain cumbersome to perform in B. burgdorferi, as they often are relatively inefficient. In comparison, our CRISPRi platform offers an easy and fast method to implement as it only requires a single plasmid transformation step and IPTG addition to obtain potent (>95%) downregulation of gene expression. To facilitate studies of various genes in wild-type and genetically modified strains, we provide over 30 CRISPRi plasmids that produce distinct levels of dcas9 expression and carry different antibiotic resistance markers. Our CRISPRi platform represents a useful and efficient complement to traditional genetic and chemical methods to study gene function in B. burgdorferi.

15.
PLoS Pathog ; 16(11): e1009030, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33175909

RESUMEN

Lyme disease, the most common vector-borne illness in North America, is caused by the spirochete Borrelia burgdorferi. Infection begins in the skin following a tick bite and can spread to the hearts, joints, nervous system, and other organs. Diverse host responses influence the level of B. burgdorferi infection in mice and humans. Using a systems biology approach, we examined potential molecular interactions between human extracellular and secreted proteins and B. burgdorferi. A yeast display library expressing 1031 human extracellular proteins was probed against 36 isolates of B. burgdorferi sensu lato. We found that human Peptidoglycan Recognition Protein 1 (PGLYRP1) interacted with the vast majority of B. burgdorferi isolates. In subsequent experiments, we demonstrated that recombinant PGLYRP1 interacts with purified B. burgdorferi peptidoglycan and exhibits borreliacidal activity, suggesting that vertebrate hosts may use PGLYRP1 to identify B. burgdorferi. We examined B. burgdorferi infection in mice lacking PGLYRP1 and observed an increased spirochete burden in the heart and joints, along with splenomegaly. Mice lacking PGLYRP1 also showed signs of immune dysregulation, including lower serum IgG levels and higher levels of IFNγ, CXCL9, and CXCL10.Taken together, our findings suggest that PGLYRP1 plays a role in the host's response to B. burgdorferi and further demonstrate the utility of expansive yeast display screening in capturing biologically relevant interactions between spirochetes and their hosts.


Asunto(s)
Borrelia burgdorferi/fisiología , Citocinas/metabolismo , Enfermedad de Lyme/microbiología , Animales , Citocinas/genética , Biblioteca de Genes , Humanos , Ratones , Ratones Endogámicos BALB C
16.
Curr Biol ; 30(19): R1151-R1158, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-33022259

RESUMEN

In scientific research, we often rely on well-established model systems to tackle important questions. In this context, extensive characterization of specific bacterial species such as Escherichia coli and Bacillus subtilis has provided a vast amount of knowledge that extends well beyond the biology of these two organisms. However, the bacterial world is large and extremely diverse, necessitating the development of additional models that complement the classical rod-shaped and symmetrically dividing systems. Caulobacter crescentus is a species that has met this need effectively, as its dimorphic lifestyle showcases distinctive features, including cellular asymmetry and differentiation during the cell cycle. Studying C. crescentus has reformed our understanding of bacterial intracellular organization, cellular development, and cell-cycle regulation. These findings have, in turn, stimulated studies in other bacteria, shedding light on how protein function and cell morphology can evolve and diversify. Studies in C. crescentus have also deepened our knowledge of other topics (e.g. cell mechanosensing, motility, and bacterial aging), while opening the door to biotechnological innovations. In this Primer, we provide some general background to this peculiar bacterium and highlight specific features that have contributed to its rise as a versatile bacterial model. This Primer is not meant to be exhaustive on any topic and is instead intended to provide a taste of the power of C. crescentus as a model system to explore a diverse range of topics.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Proteínas Bacterianas/metabolismo , Caulobacter crescentus/crecimiento & desarrollo , Ciclo Celular , División Celular , Regulación Bacteriana de la Expresión Génica , Modelos Biológicos , Proteínas Bacterianas/genética , Caulobacter crescentus/genética , Caulobacter crescentus/metabolismo
17.
Proc Natl Acad Sci U S A ; 117(45): 27795-27804, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33093194

RESUMEN

Exponentially growing systems are prevalent in nature, spanning all scales from biochemical reaction networks in single cells to food webs of ecosystems. How exponential growth emerges in nonlinear systems is mathematically unclear. Here, we describe a general theoretical framework that reveals underlying principles of long-term growth: scalability of flux functions and ergodicity of the rescaled systems. Our theory shows that nonlinear fluxes can generate not only balanced growth but also oscillatory or chaotic growth modalities, explaining nonequilibrium dynamics observed in cell cycles and ecosystems. Our mathematical framework is broadly useful in predicting long-term growth rates from natural and synthetic networks, analyzing the effects of system noise and perturbations, validating empirical and phenomenological laws on growth rate, and studying autocatalysis and network evolution.


Asunto(s)
Crecimiento , Dinámicas no Lineales , Fenómenos Biológicos , Ecosistema , Modelos Biológicos , Modelos Teóricos
18.
Cell ; 179(1): 106-119.e16, 2019 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-31539491

RESUMEN

Genes are often transcribed by multiple RNA polymerases (RNAPs) at densities that can vary widely across genes and environmental conditions. Here, we provide in vitro and in vivo evidence for a built-in mechanism by which co-transcribing RNAPs display either collaborative or antagonistic dynamics over long distances (>2 kb) through transcription-induced DNA supercoiling. In Escherichia coli, when the promoter is active, co-transcribing RNAPs translocate faster than a single RNAP, but their average speed is not altered by large variations in promoter strength and thus RNAP density. Environmentally induced promoter repression reduces the elongation efficiency of already-loaded RNAPs, causing premature termination and quick synthesis arrest of no-longer-needed proteins. This negative effect appears independent of RNAP convoy formation and is abrogated by topoisomerase I activity. Antagonistic dynamics can also occur between RNAPs from divergently transcribed gene pairs. Our findings may be broadly applicable given that transcription on topologically constrained DNA is the norm across organisms.


Asunto(s)
ADN Bacteriano/genética , ADN Superhelicoidal/genética , ARN Polimerasas Dirigidas por ADN/genética , Escherichia coli/genética , Transcripción Genética , ARN Polimerasas Dirigidas por ADN/química , Regulación Bacteriana de la Expresión Génica/genética , Glucosa/farmacología , Glicósidos/farmacología , Isopropil Tiogalactósido/farmacología , Cinética , Operón Lac/efectos de los fármacos , Operón Lac/genética , Plásmidos/genética , Regiones Promotoras Genéticas/genética , ARN Bacteriano/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Rifampin/farmacología
19.
Proc Natl Acad Sci U S A ; 116(27): 13498-13507, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31209025

RESUMEN

Lyme disease is a multisystem disorder caused by the spirochete Borrelia burgdorferi A common late-stage complication of this disease is oligoarticular arthritis, often involving the knee. In ∼10% of cases, arthritis persists after appropriate antibiotic treatment, leading to a proliferative synovitis typical of chronic inflammatory arthritides. Here, we provide evidence that peptidoglycan (PG), a major component of the B. burgdorferi cell envelope, may contribute to the development and persistence of Lyme arthritis (LA). We show that B. burgdorferi has a chemically atypical PG (PGBb) that is not recycled during cell-wall turnover. Instead, this pathogen sheds PGBb fragments into its environment during growth. Patients with LA mount a specific immunoglobulin G response against PGBb, which is significantly higher in the synovial fluid than in the serum of the same patient. We also detect PGBb in 94% of synovial fluid samples (32 of 34) from patients with LA, many of whom had undergone oral and intravenous antibiotic treatment. These same synovial fluid samples contain proinflammatory cytokines, similar to those produced by human peripheral blood mononuclear cells stimulated with PGBb In addition, systemic administration of PGBb in BALB/c mice elicits acute arthritis. Altogether, our study identifies PGBb as a likely contributor to inflammatory responses in LA. Persistence of this antigen in the joint may contribute to synovitis after antibiotics eradicate the pathogen. Furthermore, our finding that B. burgdorferi sheds immunogenic PGBb fragments during growth suggests a potential role for PGBb in the immunopathogenesis of other Lyme disease manifestations.


Asunto(s)
Antígenos Bacterianos/inmunología , Borrelia burgdorferi/inmunología , Enfermedad de Lyme/inmunología , Peptidoglicano/inmunología , Inmunidad Adaptativa/inmunología , Animales , Citocinas/metabolismo , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Peptidoglicano/análisis , Peptidoglicano/química , Líquido Sinovial/química , Líquido Sinovial/inmunología
20.
Cell ; 177(6): 1632-1648.e20, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31150626

RESUMEN

The scaling of organelles with cell size is thought to be exclusive to eukaryotes. Here, we demonstrate that similar scaling relationships hold for the bacterial nucleoid. Despite the absence of a nuclear membrane, nucleoid size strongly correlates with cell size, independent of changes in DNA amount and across various nutrient conditions. This correlation is observed in diverse bacteria, revealing a near-constant ratio between nucleoid and cell size for a given species. As in eukaryotes, the nucleocytoplasmic ratio in bacteria varies greatly among species. This spectrum of nucleocytoplasmic ratios is independent of genome size, and instead it appears linked to the average population cell size. Bacteria with different nucleocytoplasmic ratios have a cytoplasm with different biophysical properties, impacting ribosome mobility and localization. Together, our findings identify new organizational principles and biophysical features of bacterial cells, implicating the nucleocytoplasmic ratio and cell size as determinants of the intracellular organization of translation.


Asunto(s)
Estructuras Celulares/metabolismo , Estructuras Celulares/fisiología , Biosíntesis de Proteínas/fisiología , Bacterias/genética , Proteínas Bacterianas/metabolismo , Tamaño de la Célula , Citoplasma/fisiología , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Orgánulos/metabolismo , Células Procariotas/metabolismo , Células Procariotas/fisiología , Ribosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...