Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Redox Biol ; 72: 103082, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38527399

RESUMEN

The explosive compound 2,4,6-trinitrotoluene (TNT) is well known as a major component of munitions. In addition to its potential carcinogenicity and mutagenicity in humans, recent reports have highlighted TNT toxicities in diverse organisms due to its occurrence in the environment. These toxic effects have been linked to the intracellular metabolism of TNT, which is generally characterised by redox cycling and the generation of noxious reactive molecules. The reactive intermediates formed, such as nitroso and hydroxylamine compounds, also interact with oxygen molecules and cellular components to cause macromolecular damage and oxidative stress. The current review aims to highlight the crucial role of TNT metabolism in mediating TNT toxicity, via increased generation of reactive oxygen species. Cellular proliferation of reactive species results in depletion of cellular antioxidant enzymes, DNA and protein adduct formation, and oxidative stress. While TNT toxicity is well known, its ability to induce oxidative stress, resulting from its reductive activation, suggests that some of its toxic effects may be caused by its reactive metabolites. Hence, further research on TNT metabolism is imperative to elucidate TNT-induced toxicities.


Asunto(s)
Estrés Oxidativo , Especies Reactivas de Oxígeno , Trinitrotolueno , Trinitrotolueno/metabolismo , Trinitrotolueno/toxicidad , Humanos , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Activación Metabólica , Animales , Sustancias Explosivas/metabolismo , Sustancias Explosivas/toxicidad , Oxidación-Reducción
2.
Chem Biol Interact ; 351: 109752, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34801537

RESUMEN

2,4,6-trinitrotoluene (TNT) is a known source of reactive oxygen species (ROS), which cause oxidative stress in aquatic ecosystems. Carbonyl reductases (CRs) are one of several possible defense mechanisms induced against ROS products, especially those that result in the 'so-called' carbonyl stress. Daphnia magna, a freshwater organism living in stagnant freshwater bodies, expresses four copies of the CR gene (Dma_CR1, Dma_CR2, Dma_CR3 and Dma_CR4). In this study, induction of all four copies of Dma_CR by 2-amino-4,6-dinitrotoluene (2-ADNT) and 4-amino-2,6-dinitrotoluene (4-ADNT), was investigated. Reverse transcription polymerase chain reaction (RT-PCR) analysis of treated daphnids revealed up-regulation of Dma_CR1 alone in response to TNT, but not 2-ADNT and 4-ADNT (which are key metabolites of TNT). This concentration- and time-dependent up-regulation in mRNA-expression was observed both in the presence and absence of light, in the same magnitude. Moreover, significant change in mRNA-expression could be observed 8 h after treatment with TNT. In the presence of TNT, the antioxidant N-acetylcysteine (NAc) could not reverse TNT-induced up-regulation of Dma_CR1 mRNA-expression. On the other hand, withdrawal of TNT from the culture medium caused a significant reduction in the TNT-induced mRNA-expression of Dma_CR1 within 24 h. These findings highlight the potential of Dma_CR1 as a biomarker for biomonitoring of TNT levels in freshwater bodies.


Asunto(s)
Carbonil Reductasa (NADPH)/metabolismo , Daphnia/efectos de los fármacos , Trinitrotolueno/farmacología , Regulación hacia Arriba/efectos de los fármacos , Contaminantes Químicos del Agua/farmacología , Compuestos de Anilina/farmacología , Animales , Biomarcadores/metabolismo , Carbonil Reductasa (NADPH)/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA