Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Environ Res ; 87(3): 252-7, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25842536

RESUMEN

Energy recovery and consumption in a microbial fuel cell (MFC) can be significantly affected by the operating conditions. This study investigated the effects of electrolyte recirculation and operation mode (continuous vs sequence batch reactor) on the energy balance in a tubular MFC. It was found that decreasing the anolyte recirculation also decreased the energy recovery. Because of the open environment of the cathode electrode, the catholyte recirculation consumed 10 to 50 times more energy than the anolyte recirculation, and resulted in negative energy balances despite the reduction of the anolyte recirculation. Reducing the catholyte recirculation to 20% led to a positive energy balance of 0.0288 kWh m(-3). The MFC operated as a sequence batch reactor generated less energy and had a lower energy balance than the one with continuous operation. Those results encourage the further development of MFC technology to achieve neutral or even positive energy output.


Asunto(s)
Fuentes de Energía Bioeléctrica , Electrólitos/química , Conductividad Eléctrica , Eliminación de Residuos Líquidos
2.
Environ Sci Technol ; 45(10): 4652-7, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21526816

RESUMEN

Bioelectrochemical desalination is potentially advantageous because of bioenergy production and integrated wastewater treatment and desalination. In this work, the performance and energy benefits of a liter-scale upflow microbial desalination cell (UMDC) were evaluated. The UMDC desalinated both salt solution (NaCl) and artificial seawater, and the removal rate of total dissolved solid (TDS) increased with an increased hydraulic retention time, although TDS reduction in artificial seawater was lower than that in salt solution. Our analysis suggested that electricity generation was a predominant factor in removing TDS (more than 70%), and that other factors, like water osmosis and unknown processes, also contributed to TDS reduction. It was more favorable given the high energy efficiency, when treating salt solution, to operate the UMDC under the condition of high power output compared with that of high current generation because of the amount of energy production; while high current generation was more desired with seawater desalination because of lower salinity in the effluent. Under the condition of the high power output and the assumption of the UMDC as a predesalination in connection with a reversal osmosis (RO) system, the UMDC could produce electrical energy that might potentially account for 58.1% (salt solution) and 16.5% (artificial seawater) of the energy required by the downstream RO system. Our results demonstrated the great potential of bioelectrochemical desalination.


Asunto(s)
Salinidad , Agua de Mar/química , Microbiología del Agua , Purificación del Agua/métodos , Cloruro de Sodio/análisis , Cloruro de Sodio/química , Cloruro de Sodio/metabolismo , Purificación del Agua/instrumentación
3.
Bioresour Technol ; 102(1): 376-80, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20584603

RESUMEN

Microbial desalination cells (MDCs) hold great promise for drinking water production because of potential energy savings during the desalination process. In this study, we developed a continuously operated MDC--upflow microbial desalination cell (UMDC) for the purpose of salt removal. During the 4-month operation, the UMDC constantly removed salts and generated bio-electricity. At a hydraulic retention time (HRT) of 4 days (salt solution) and current production of ∼62 mA, the UMDC was able to remove more than 99% of NaCl from the salt solution that had an initial salt concentration of 30 g total dissolved solids (TDS)/L. In addition, the TDS removal rate was 7.50 g TDSL(-1)d(-1) (salt solution volume) or 5.25 g TDSL(-1)d(-1) (wastewater volume), and the desalinated water met the drinking water standard, in terms of TDS concentration. A high charge transfer efficiency of 98.6% or 81% was achieved at HRT 1 or 4d. The UMDC produced a maximum power density of 30.8 W/m(3). The phenomena of bipolar electrodialysis and proton transport in the UMDC were discussed. These results demonstrated the potential of the UMDC as either a sole desalination process or a pre-desalination reactor for downstream desalination processes.


Asunto(s)
Aire , Fuentes de Energía Bioeléctrica , Cloruro de Sodio/economía , Biodegradación Ambiental , Reactores Biológicos , Electricidad , Electrodos , Soluciones , Factores de Tiempo , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...